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Abstract

A procedure based on the Radon transform and elements of distribution theory is developed to obtain fundamental

thermoelastic three-dimensional (3D) solutions for thermal and/or mechanical point sources moving steadily over the

surface of a half space. A concentrated heat flux is taken as the thermal source, whereas the mechanical source consists

of normal and tangential concentrated loads. It is assumed that the sources move with a constant velocity along a fixed

direction. The solutions obtained are exact within the bounds of Biot�s coupled thermo-elastodynamic theory, and

results for surface displacements are obtained over the entire speed range (i.e. for sub-Rayleigh, super-Rayleigh/sub-

sonic, transonic and supersonic source speeds). This problem has relevance to situations in Contact Mechanics,

Tribology and Dynamic Fracture, and is especially related to the well-known heat checking problem (thermo-me-

chanical cracking in an unflawed half-space material from high-speed asperity excitations). Our solution technique fully

exploits as auxiliary solutions the ones for the corresponding plane-strain and anti-plane shear problems by reducing

the original 3D problem to two separate 2D problems. These problems are uncoupled from each other, with the first

problem being thermoelastic and the second one pure elastic. In particular, the auxiliary plane-strain problem is

completely analogous to the original problem, not only with regard to the field equations but also with regard to the

boundary conditions. This makes the technique employed here more advantageous than other techniques, which re-

quire the prior determination of a fictitious auxiliary plane-strain problem through solving an integral equation.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The rapid motion of a point mechanical and/or thermal load over the surface of a half space is a problem

that has relevance to situations in Contact Mechanics, Tribology and Dynamic Fracture. Typical cases of

application are the following: (i) Motion of an asperity developed on the mating surface of mechanical
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systems that are pressed against each other and undergo relative sliding rapid motion accompanied by dry

friction. Such an asperity may be a material inclusion or some thermo-mechanical deformation of the

mating surface (see e.g. Ju and Huang, 1982; Barber, 1984; Kennedy, 1984; Huang and Ju, 1985; Barber

and Ciavarella, 2000). (ii) Brake systems (see e.g. Ling and Ng, 1962; Huang and Ju, 1985; Barber and
Ciavarella, 2000). (iii) Crack face contact in intersonic interfacial rapid fracture of bimaterial plates (see e.g.

Rosakis et al., 1998; Huang et al., 1998). (iv) Deformations generated by the motion of high-speed modern

trains (Lefeuvemesgouez et al., 2000; Krylov et al., 2000). In the foregoing situations, the moving me-

chanical/thermal load may produce severe deformation and temperature rises in a thin zone near the

contact zone, and therefore may cause excessive wear and even cracking near this zone.

In many cases, the problem described above can be modeled as a steady-state situation involving a half

space under mechanical/thermal loads, which move over the surface of a half space at a constant velocity.

In addition, the solution of the problem with concentrated loads may serve as a Green�s function for solving,
through integral equations, more general contact problems (see, e.g., for 2D elastodynamic and thermo-

elastodynamic contact problems the works by Georgiadis and Barber, 1993, and Brock and Georgiadis,

2000). Here, the 3D problem of moving mechanical/thermal point sources is examined within the coupled

thermo-elastodynamic theory of Biot (1956). Additional aspects of this theory and solutions to specific

problems were presented by, among others, Chadwick (1960), Carlson (1972), Dassios and Grillakis (1984),

Massalas et al. (1985), Atkinson and Craster (1992), Brock (1995, 1997), Brock and Georgiadis (1997,

1999), and Georgiadis et al., 1998, 1999).

Existing analyses of thermoelastic problems dealing with moving mechanical/thermal loads over the
surface of a half space may be categorized according to the form of the governing equations employed, i.e.

one may distinguish treatments which employ uncoupled or coupled thermoelasticity and also treatments

which exclude or include inertial (dynamic) effects. For instance, the approaches of Ling and Mow (1965);

Jahanshahi (1966); Mow and Cheng (1967); Kilaparti and Burton (1978); Barber (1984), and Bryant (1988)

use uncoupled thermoelasticity and exclude inertial effects, whereas the analyses of Ju and Huang (1982),

and Huang and Ju (1985) employ uncoupled thermoelasticity but include inertial effects. On the contrary,

Brock and Georgiadis (1997, 1999) provide more complete exact solutions that include both thermal-

coupling and inertial effects. In addition, the work of Brock et al. (1997) considers transient effects and
makes comparisons with the steady-state results of Brock and Georgiadis (1997) revealing that the steady-

state assumption is indeed satisfactory far away from the point of the first application of the loading, along

the half-space surface.

The problem considered here is the 3D analogue of the plane-strain problem considered by Brock and

Georgiadis (1997) and it is based on coupled thermo-elastodynamics too. A related study is that of Brock

and Rodgers (1997) which, however, was restricted to consider only a normal moving load (the cases of a

tangential load and a heat source were not considered) and a sub-Rayleigh load speed. In the present study,

we follow a different method than the Laplace transform (double and two-sided) method of Brock and
Rodgers (1997) and, more importantly, we obtain results over the entire speed range (i.e. for sub-Rayleigh,

super-Rayleigh/subsonic, transonic and supersonic speeds of the loads) and for all cases of loading (i.e.

normal, tangential and thermal loads). Notice also that, with the exception of the work of Brock and

Rodgers (1997), all studies in the literature do not consider the 3D case.

In the absence of thermal effects, the present case reduces to the classical 3D steady-state elastodynamic

problem of moving point loads along the surface of a half space. This problem was considered by, among

others, Eason (1965); Lansing (1966); Barber (1996), and Georgiadis and Lykotrafitis (2001). Since the

�pure mechanical� problem may serve as a guide for the more difficult thermo-mechanical problem con-
sidered here, it is interesting to briefly discuss the solution procedures in these studies. Eason (1965) and

Lansing (1966) employed double Fourier transforms but, especially when the load speed lies in the super-

Rayleigh regime, the double Fourier (or, equivalently, the double two-sided Laplace) transform technique

becomes particularly involved.
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In our opinion, the approaches of Barber (1996) and Georgiadis and Lykotrafitis (2001) are much

simpler than the approaches of Eason (1965) and Lansing (1966). Also, the technique of Georgiadis and

Lykotrafitis (2001) fully exploits the existing solution of the corresponding plane-strain problem by treating

the latter problem as an auxiliary one. In particular, Georgiadis and Lykotrafitis (2001) developed a
technique based on the Radon transform (see e.g. Gel�fand et al., 1966), certain coordinate transformations

and distribution theory to reduce the original 3D problem to two auxiliary problems, which are 2D and

uncoupled (one problem is of the plane-strain type and the other of the anti-plane shear type). These

corresponding problems are completely analogous to the original 3D problem, not only with regard to the

field equations but also with regard to the boundary conditions. On the other hand, Barber (1996) pre-

sented a superposition technique of the Smirnov–Sobolev type (see e.g. Sveklo, 1964; Poruchikov, 1993) for

the specific case of a normal load. This reduces the original 3D problem to an auxiliary 2D problem. The

auxiliary plane-strain problem now is not completely analogous to the original 3D problem and its de-
termination can only be achieved through the solution of an integral equation. In general also, the solution

to such an auxiliary problem probably cannot be readily available in the literature since the problem is

somewhat artificial, as relative experience indicates (see e.g. Poruchikov, 1993). In view of the above, it

seems that the Radon-transform technique (which is not based on explicit superposition-type arguments) is

more direct than the Smirnov–Sobolev technique. In addition, Georgiadis and Lykotrafitis (2001) provided

a complete solution to the �pure mechanical� 3D problem, filling therefore a gap in the literature related to

this problem, in the sense that they obtained results over the entire speed range (i.e. for sub-Rayleigh, super-

Rayleigh/subsonic, transonic and supersonic speeds of the loads) and for both normal and tangential loads.
Here, in considering the 3D problem of moving mechanical/heat point sources, the Radon-transform

approach is followed by fully taking advantage of existing solutions of the corresponding 2D problems. The

two auxiliary problems involving half-plane domains and surface loadings are again uncoupled; the first is

the thermo-elastodynamic plane-strain problem of moving mechanical/thermal line sources (Brock and

Georgiadis, 1997) and the second is the �pure mechanical� anti-plane shear problem of a moving line load

(Georgiadis and Lykotrafitis, 2001). After establishing the correspondence principle connecting the 3D

problem with the auxiliary ones, the solution to the original problem follows by performing first a coor-

dinate transformation and then taking the inverse Radon transform of the 2D solutions. In the course of
the inversions, extensive use of distribution theory is made concerning mainly treatment of products of

distributions.

Another comment pertains to the applicability of the Radon-transform approach described above on

non-axisymmetric situations. In general, the method still works in the case that the loading is not axially

symmetric but the 2D auxiliary problems are no longer direct analogues of the original 3D problem. The

method is particularly simple when there is no angular dependence in the boundary conditions (as is the

case here) regardless of possible loss of axisymmetry due to the material response (anisotropy) and/or

the generation of Mach waves in the medium (this asymmetry is induced by changes in the nature of
governing PDEs of steady-state dynamical problems––the changes being manifested by the existence of

different velocity regimes).

Finally, we should also mention that interesting applications of the Radon transform in elasticity

problems were presented earlier by Willis (1970, 1973), and more recently by, among others, Wang and

Achenbach (1996) and Shmegera (2000).

2. Problem statement

Consider a thermally conducting linearly elastic isotropic body in the form of a 3D half space x3 P 0.

This otherwise unloaded body is initially at rest and at a uniform temperature T0 (expressed in K), but at
time t ¼ 0 is disturbed by the motion of a mechanical/thermal source (see Fig. 1). The concentrated point
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load has components P and S (these loads are in the directions x3 and x1, respectively), whereas the point

heat source has intensity KQ, with K denoting the thermal conductivity expressed in (power) (length)�1

(K)�1 and Q being a multiplier expressed in (length) (K). The mechanical/thermal source moves under a

constant velocity V over the surface x3 ¼ 0 and along the x1-direction. Notice that a tangential load in the

direction orthogonal to the direction of motion (i.e. along the x2-direction) is not considered because this

case is rather impractical. Indeed, it is difficult for one to apply and maintain a moving tangential load

having a direction that is orthogonal to the direction of motion. This case, however, was considered in

Georgiadis and Lykotrafitis (2001) for the sake of completeness.
Then, the governing equations of the problem according to the linear coupled thermo-elastodynamic

theory (Biot, 1956; Chadwick, 1960; Carlson, 1972) will be written. With respect to a fixed Cartesian co-

ordinate system O0xj (j ¼ 1; 2; 3), the equations of motion (thermoelastic Navier–Cauchy equations) and the

generalized heat-conduction equation, in the absence of body forces and sources, along with the stress–

strain relations (Duhamel–Neumann law) are as follows:

lr2uþ ðk þ lÞrðr � uÞ � j0ð3k þ 2lÞrh ¼ q
o2u

ot2
; ð1aÞ

Kr2h � qCv
oh
ot

� j0ð3k þ 2lÞT0
oðr � uÞ

ot
¼ 0; ð1bÞ

r ¼ lðruþ urÞ þ kðr � uÞ1� j0ð3k þ 2lÞh1; ð1cÞ
where u is the displacement vector with components uj, T is the current temperature, h ¼ T � T0 is the

change in temperature, r is the stress tensor with components rij (i; j ¼ 1; 2; 3), 1 is the identity tensor, r is

the 3D gradient operator, r � u is the dilatation, r2 is the Laplacian operator, (k, l) are the Lam�ee con-

stants, q is the mass density, j0 is the coefficient of thermal expansion, and Cv is the specific heat at constant
deformation. It is also noticed that the third term in the LHS of Eqs. (1a) and (1b) arises from the in-

teraction of the deformation field with the thermal field. In this process, however, shear (rotational) waves

remain unaffected by the ability of the medium to conduct heat; only longitudinal (dilatational) waves are

modified by thermal straining and, conversely, only mechanical energy expended in volume changes is

converted into heat.

We now introduce the standard steady-state assumption (see e.g. Fung, 1965; Georgiadis, 1986; Barber,

1996; Brock and Rodgers, 1997) according to which a steady stress and displacement field is created in the

medium w.r.t. an observer situated in a frame of reference attached to the moving load, if this source has
been moving steadily for a sufficiently long time. In this way, any transients can reasonably be avoided

Fig. 1. Thermal and mechanical sources moving under constant velocity V over the surface of an elastic half space. O0x1x2x3 is a fixed

Cartesian coordinate system and Oxyz is a moving Cartesian coordinate system attached to the loads.
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(therefore gaining considerable simplification in the analysis) and, moreover, upon introduction of the

Galilean transformation

x ¼ x1 � Vt; y ¼ x2; z ¼ x3; ð2Þ
the boundary conditions become independent of t and the variables (x1; t) enter the problem only in the

combination (x1 � Vt). Furthermore, in the new moving Cartesian coordinate system Oxyz, partial deri-
vatives w.r.t. t are neglected and (1a) and (1b) can be written as

r2uþ ðm2 � 1Þrðr � uÞ þ jrh � m2c2
o2u

ox2
¼ 0; ð3aÞ

K
l
r2h þ Cv

mc
VT

oh
ox

� jT0cVL
oðr � uÞ

ox
¼ 0; ð3bÞ

where m ¼ ðVL=VTÞ > 1 with VL ¼ ½ðk þ 2lÞ=q
1=2 being the longitudinal (L) wave speed in the absence of
thermal effects and VT ¼ ðl=qÞ1=2 being the transverse (T) or shear wave speed, c � ML ¼ V =VL and

mc � MT ¼ V =VT are the two Mach numbers, j ¼ j0ð4� 3m2Þ < 0, the displacement vector has the com-

ponents (ux; uy ; uz), the stress tensor has the components (rzx; rzy ; rzz; . . .),

r � u ¼ oux
ox

� �
þ ouy

oy

� �
þ ouz

oz

� �
;

and

r2 ¼ o2

ox2

� �
þ o2

oy2

� �
þ o2

oz2

� �
:

It is emphasized that VL above is not the longitudinal-wave speed in coupled thermoelasticity but serves in

our formulation for a convenient normalization of the field equations.

Finally, the boundary conditions of the problem take the form (see Fig. 1)

rzzðx; y; z ¼ 0Þ ¼ �PdðxÞdðyÞ; ð4aÞ

rzxðx; y; z ¼ 0Þ ¼ �SdðxÞdðyÞ; ð4bÞ

rzyðx; y; z ¼ 0Þ ¼ 0; ð4cÞ

ohðx; y; z ¼ 0Þ
oz

¼ �QdðxÞdðyÞ; ð4dÞ

which hold for �1 < x < þ1 and �1 < y < þ1. In the above equations, dð Þ is the Dirac delta dis-

tribution. The objective of the present work is to determine the displacement field for the problem described

by Eqs. (1c), (3) and (4).

3. Basic Radon-transform analysis

The solution of the problem described in Section 2 will be obtained through a technique based on the

Radon transform (see e.g. Gel�fand et al., 1966; Ludwig, 1966; Deans, 1983), certain coordinate trans-

formations and elements of distribution theory. This procedure reduces first the original 3D problem to a

pair of corresponding auxiliary problems, i.e. a 2D plane-strain problem and a 2D anti-plane shear
problem. Then, the solution to the original problem follows simply by performing first a coordinate

transformation and then taking the inverse Radon transform of the known 2D solutions. Since, in general,
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2D problems are easier than their 3D counterparts, solutions to the auxiliary problems can be already

available in many cases and this is an advantage of the technique.

The 2D Radon transform of a function f ðrÞ, with jrj ¼ ðx2 þ y2Þ1=2, is defined as

Rðf ðrÞÞ � ~ff ðq;xÞ ¼
Z Z

f ðrÞ � dðq� n � rÞdr ¼
Z
L
f ðx; yÞds

¼
Z þ1

�1

Z þ1

�1
f ðx; yÞdðq� x cosx � y sinxÞdxdy; ð5Þ

where L denotes all straight lines in the plane Oxy (see Fig. 2), and ds is the infinitesimal length along such a

line. The lines L are defined by n � r ¼ q, with n � ðnx; nyÞ ¼ ðcosx; sinxÞ, and the Radon transform is
in fact the integral of f ðrÞ over all these straight lines in the plane. The Radon-transform properties of

linearity, derivative transformation and transformation of the product of Dirac delta distributions will be

used here. These properties are as follows:

RðC1f1ðrÞ þ C2f2ðrÞÞ ¼ C1
~ff1ðq;xÞ þ C2

~ff2ðq;xÞ; ð6Þ

R
of
oxj

� �
¼ nj

o ~ff ðq;xÞ
oq

; ð7Þ

R
o2f

oxjoxk

� �
¼ njnk

o2 ~ff ðq;xÞ
oq2

; Rðr2f Þ ¼ o2 ~ff ðq;xÞ
oq2

; ð8a; bÞ

RðdðxÞ � dðyÞÞ ¼ dðqÞ; ð9Þ
where (C1, C2) are constants, (j, k) take the values 1 and 2, (x1 � x; x2 � y), and r2 now is the 2D Laplace

operator (i.e. r2 ¼ ðo2=ox2Þ þ ðo2=oy2Þ).
The inverse 2D Radon transform is given by

f ðx; yÞ ¼ f ðr;uÞ ¼ � 1

4p2

Z 2p

0

Z þ1

�1

o ~ff ðq;xÞ
oq

� PF 1

q� r cosðx � uÞ

� �
dq

 !
dx; ð10Þ

where the symbol PFð Þ stands for the principal-value pseudo-function (or distribution) (see e.g. Roos,

1969; Kanwal, 1998). In other words, the symbol PFð Þ means that the inner integral is interpreted in the

Cauchy principal-value sense due to a pole of the function ð Þ. Equivalently, this distribution can be defined

as PFð1=xÞ;/h i ¼ lims!0

R
jxjP s½/ðxÞ=x
dx, where h; i denotes the inner product of distributions, / is a test

Fig. 2. Geometry for the 2D Radon transform of functions in the xy-plane. The symbol L denotes all straight lines in the plane.
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function and s is a positive number such that s ! 0. In the analysis below, the case of more than one

singularities in the same integrand (i.e. the case of product of distributions) frequently appears and,

therefore, the latter notation proves to be convenient.

Next, the two auxiliary problems will be obtained as transformed problems of the original problem.
Operating with the Radon transform (5) to Eqs. (3) and (4), and using the properties (6)–(9) provides the

following set of transformed field equations and boundary conditions

o2~uux
oq2

þ o2~uux
oz2

þ ðm2 � 1Þnx
o

oq
nx

o~uux
oq

 
þ ny

o~uuy
oq

þ o~uuz
oz

!
þ jnx

o~hh
oq

� m2c2x
o2~uux
oq2

¼ 0; ð11aÞ

o2~uuy
oq2

þ o2~uuy
oz2

þ ðm2 � 1Þny
o

oq
nx

o~uux
oq

 
þ ny

o~uuy
oq

þ o~uuz
oz

!
þ jny

o~hh
oq

� m2c2x
o2~uux
oq2

¼ 0; ð11bÞ

o2~uuz
oq2

þ o2~uuz
oz2

þ ðm2 � 1Þ o
oz

nx
o~uux
oq

 
þ ny

o~uuy
oq

þ o~uuz
oz

!
þ j

o~hh
oz

� m2c2x
o2~uuz
oq2

¼ 0; ð11cÞ

K
l

o2 ~hh
oq2

 
þ o2 ~hh

oz2

!
þ Cv

mcx
VT

o~hh
oq

� jT0cxVL
o

oq
nx

o~uux
oq

 
þ ny

o~uuy
oq

þ o~uuz
oz

!
¼ 0; ð11dÞ

~rrzzðq;x; z ¼ 0Þ ¼ �PdðqÞ; ð12aÞ

~rrzxðq;x; z ¼ 0Þ ¼ �SdðqÞ; ð12bÞ

~rrzyðq;x; z ¼ 0Þ ¼ 0; ð12cÞ

o~hhðq;x; z ¼ 0Þ
oz

¼ �QdðqÞ; ð12dÞ

where cx ¼ cnx. Now, as Fig. 3 depicts, we perform a rotation of the original (x; y; z) coordinate system

through an angle x about the z-axis. In the new (q; s; z) coordinate system, Eqs. (11)–(12) are expressed as

o2~uuq
oq2

þ o2~uuq
oz2

þ ðm2 � 1Þ o

oq
o~uuq
oq

 
þ o~uuz

oz

!
þ j

o~hh
oq

� m2c2x
o2~uuq
oq2

¼ 0; ð13aÞ

o2~uuz
oq2

þ o2~uuz
oz2

þ ðm2 � 1Þ o
oz

o~uuq
oq

 
þ o~uuz

oz

!
þ j

o~hh
oz

� m2c2x
o2~uuz
oq2

¼ 0; ð13bÞ

K
l

o2 ~hh
oq2

 
þ o2 ~hh

oz2

!
þ Cv

mcx
VT

o~hh
oq

� jT0cxVL
o

oq
o~uuq
oq

 
þ o~uuz

oz

!
¼ 0; ð13cÞ

ð1� m2c2xÞ
o2~uus
oq2

þ o2~uus
oz2

¼ 0; ð14Þ

~rrzzðq;x; z ¼ 0Þ ¼ �PdðqÞ; ð15aÞ

~rrzqðq;x; z ¼ 0Þ ¼ �S cosxdðqÞ; ð15bÞ
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o~hhðq;x; z ¼ 0Þ
oz

¼ �QdðqÞ; ð15cÞ

~rrzsðq;x; z ¼ 0Þ ¼ S sinxdðqÞ; ð16Þ
where

~uuz
~uuq
~uus

0
@

1
A ¼

1 0 0
0 cosx sinx
0 � sinx cosx

0
@

1
A ~uuz

~uux
~uuy

0
@

1
A; ð17aÞ

~rrzz
~rrzq
~rrzs

0
@

1
A ¼

1 0 0
0 cosx sinx
0 � sinx cosx

0
@

1
A ~rrzz

~rrzx
~rrzy

0
@

1
A: ð17bÞ

Finally, as expected by the linearity of the operations involved, one may corroborate that the rotated
Radon-transformed stresses and displacement gradients are related in exactly the same manner as in the

physical (non-transformed) plane of the 2D plane-strain and anti-plane shear states. Indeed, it can be

shown, by virtue of (1c), (7) and (17), that the following relations hold

~rrzz ¼ ðk þ 2lÞ o~uuz
oz

þ k
o~uuq
oq

þ lj~hh; ð18aÞ

~rrzq ¼ l
o~uuz
oq

 
þ o~uuq

oz

!
; ð18bÞ

~rrzs ¼ l
o~uus
oz

; ð19Þ

which certainly obey the transformed Duhamel–Neumann law ~rr ¼ lðr~uuþ ~uurÞ þ kðr � ~uuÞ1þ lj~hh, where ~uu
and ~rr have the components (~uuz; ~uuq; ~uus) and (~rrzz; ~rrzq; ~rrzs; . . .), respectively.

Now, one may observe that Eqs. (13), (15) and (18) form a 2D plane-strain problem in the (q; z) coor-
dinate system. As Fig. 4a depicts, this problem (the first auxiliary problem) involves a linearly elastic and

thermally conducting body in the form of the half plane zP 0 that is disturbed by the steady-state motion

of a concentrated line mechanical/thermal loading. The mechanical load has components P and S cosx,
whereas the heat source has intensity KQ. The concentrated loads move along the q-axis with velocity

Fig. 3. Initial xy-system and rotated qs-system.
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Vq � V cosx. On the other hand, Eqs. (14), (16) and (19) form a 2D anti-plane shear problem in the (s; z)
coordinate system. As Fig. 4b now depicts, this problem (the second auxiliary problem) involves a linearly
elastic body in the form of the half plane zP 0 that is disturbed by the steady-state motion of a concen-

trated anti-plane line load. In this case, the problem is �pure mechanical� and the only load S sinx moves

along the q-axis again with velocity Vq � V cosx.

4. Results for the first auxiliary problem

In this section, the solution of the first auxiliary problem (2D plane-strain thermo-elastodynamic
problem) is recorded. This solution was obtained by Brock and Georgiadis (1997) through two-sided

Laplace transforms and exact inversions. Functions in the physical plane of the auxiliary problem are, of

course, transformed functions in the Radon-transform plane of the original 3D problem. In using these

results, one should be careful in properly interpreting the 2D solution in the rotated coordinate system so as

the physics of the solution in the new system to be retained. More details on this are given in the end of the

present section.

By invoking superposition, the total normal displacement at the surface, in the entire speed range, is

written as

~uuzðq;x; z ¼ 0Þ ¼ ~uuðPÞz ðq;x; z ¼ 0Þ þ ~uuðSÞz ðq;x; z ¼ 0Þ þ ~uuðQÞz ðq;x; z ¼ 0Þ; ð20Þ
where (~uuðP Þz ; ~uuðSÞz ; ~uuðQÞz ) are, respectively, the normal displacement due to a normal load P , tangential load
S cosx and thermal load KQ. The individual terms at the surface are given by the expressions

~uuðPÞz ðq;x; z ¼ 0Þ ¼ P
l
F ðPÞ
1 ðMT cosx; eÞ lnðjqjÞ

"
� F

ðPÞ
2 ðMT cosx; eÞ

2
sgnðsgnðcosxÞqÞ

#
; ð21Þ

~uuðSÞz ðq;x; z ¼ 0Þ ¼ S cosxsgnðcosxÞ
l

F ðSÞ
1 ðMT cosx; eÞ lnðjqjÞ

"
� F

ðSÞ
2 ðMT cosx; eÞ

2
sgnðsgnðcosxÞqÞ

#
;

ð22Þ

~uuðQÞz ðq;x; z ¼ 0Þ ¼ QjhsgnðcosxÞ
ð1þ eÞ1=2

F ðQÞ
1 ðMT cosx; eÞ ln jqj

"
� F

ðQÞ
2 ðMT cosx; eÞ

2
sgnðsgnðcosxÞqÞ

#
;

ð23Þ

Fig. 4. First (a) and second (b) auxiliary problems in the qz-plane.

G. Lykotrafitis, H.G. Georgiadis / International Journal of Solids and Structures 40 (2003) 899–940 907



where sgnð Þ is the signum function, e ¼ ðT0=CvÞðjVT=mÞ2 is the dimensionless coupling constant,

h ¼ KVT=lmCv is the thermoelastic characteristic length, and

F ðPÞ
1 ðMT; eÞ ¼

M2
Tð1�M2

LeÞ
1=2

pRe
� F ðPÞ

11 ðMT; eÞ; V < VT

M2
Tð2�M2

TÞ
2ð1�M2

LeÞ
1=2

pKe
� F ðP Þ

12 ðMT; eÞ; VT < V < VLe

0 � F ðPÞ
13 ðMT; eÞ; VLe < V

8>>>>><
>>>>>:

; ð24Þ

F ðPÞ
2 ðMT; eÞ ¼

0 � F ðPÞ
21 ðMT; eÞ; V < VT

4M2
Tð1�M2

LeÞðM2
T � 1Þ1=2

Ke
� F ðP Þ

22 ðMT; eÞ; VT < V < VLe

M2
TðM2

Le � 1Þ1=2

We
� F ðPÞ

23 ðMT; eÞ; VLe < V

8>>>>><
>>>>>:

; ð25Þ

F ðSÞ
1 ðMT; eÞ ¼

0 � F ðSÞ
11 ðMT; eÞ; V < VT

� 2M2
Tð2�M2

TÞð1�M2
LeÞ

1=2ðM2
T � 1Þ1=2

pKe
� F ðSÞ

12 ðMT; eÞ; VT < V < VLe

0 � F ðSÞ
13 ðMT; eÞ; VLe < V

8>>><
>>>:

; ð26Þ

F ðSÞ
2 ðMT; eÞ ¼

ð2�M2
TÞ � 2ð1�M2

LeÞ
1=2ð1�M2

TÞ
1=2

Re
� F ðSÞ

21 ðMT; eÞ; V < VT

ð2�M2
TÞ

3 þ 8ð1�M2
LeÞðM2

T � 1Þ
Ke

� F ðSÞ
22 ðMT; eÞ; VT < V < VLe

ð2�M2
TÞ þ 2ðM2

Le � 1Þ1=2ðM2
T � 1Þ1=2

We
� F ðSÞ

23 ðMT; eÞ; VLe < V

8>>>>>>><
>>>>>>>:

; ð27Þ

F ðQÞ
1 ðMT; eÞ ¼

0 � F ðQÞ
11 ðMT; eÞ; V < VT

� 4MLeð2�M2
TÞð1�M2

LeÞ
1=2ðM2

T � 1Þ1=2

pKe
� F ðQÞ

12 ðMT; eÞ; VT < V < VLe

0 � F ðQÞ
13 ðMT; eÞ; VLe < V

8>>><
>>>:

; ð28Þ

F ðQÞ
2 ðMT; eÞ ¼

ð2�M2
TÞMLe

Re
� F ðQÞ

21 ðMT; eÞ; V < VT

ð2�M2
TÞ

3MLe

Ke
� F ðQÞ

22 ðMT; eÞ; VT < V < VLe

ð2�M2
TÞMLe

We
� F ðQÞ

23 ðMT; eÞ; VLe < V

8>>>>>>><
>>>>>>>:

: ð29Þ

The above functions depend upon the �shear� (or �transverse�) Mach numberMT and the coupling constant

e. The orders of magnitude of the coupling constant and the thermoelastic length for usual conducting

materials (e.g. aluminum, copper, lead, titanium and steel) are e ¼ Oð10�2Þ and h ¼ Oð10�10Þm. In Eqs. (24)–

(29), the following definitions are employed. First, it is noticed that the quantity VLe ¼ VLð1þ eÞ1=2 represents
the steady-state velocity of thermoelastic longitudinal waves (Chadwick, 1960; Brock and Georgiadis, 1997)
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and, accordingly, the �thermoelastic longitudinal� Mach number MLe � V =VLe ¼ ML=ð1þ eÞ1=2 is defined.

Then, the steady-state thermoelastic Rayleigh function (Brock and Georgiadis, 1997)

Re � ReðMT; eÞ ¼ ð2�M2
TÞ

2 � 4ð1�M2
LeÞ

1=2ð1�M2
TÞ

1=2
; ð30Þ

defines the steady-state thermoelastic Rayleigh-wave speed VRe as the non-trivial real root of the equation

Re ¼ 0, and

We � WeðMT; eÞ ¼ ð2�M2
TÞ

2 þ 4ðM2
Le � 1Þ1=2ðM2

T � 1Þ1=2; ð31Þ

Ke � KeðMT; eÞ ¼ ð2�M2
TÞ

4 � 16ð1�M2
LeÞð1�M2

TÞ; ð32Þ
are functions that are related to the Rayleigh function. In particular, Ke results as a product by the mul-

tiplication of complex conjugates involving the Rayleigh function, at a certain step of the solution pro-
cedure of the plane-strain problem. Appendix A of the present work provides a brief analysis concerning

the zeroes of Ke. One of those zeroes coincides with the non-trivial zero of the Rayleigh function Re defining

therefore the thermoelastic Rayleigh-wave velocity. We should mention that the results of Appendix A were

obtained in the spirit of the analysis by Rahman and Barber (1995) on the �pure elastic� steady-state
Rayleigh function.

It is also noticed that the Mach numbers MLe and MT are related, by their definition, through the fol-

lowing equation

MLe ¼
1

me
MT; ð33Þ

with

me �
VLe

VT
¼ 2ð1� mÞð1þ eÞ

ð1� 2mÞ

� �1=2

> 1; ð34Þ

where m is the Poisson ratio of the material. The last expression may take the form me ¼ ½2ð1� meÞ=
ð1� 2meÞ
1=2 if the new material constant me is introduced as

me ¼
m þ eð1� mÞ
1þ 2eð1� mÞ : ð35Þ

Further, it can be shown that e=ð1þ 2eÞ6 me 6 1=2. Finally, we notice that e is also used as a subscript to

emphatically denote that a certain quantity or function depends on thermal effects through the coupling

constant.

In the same manner now, one may write by superposition the total tangential displacement at the surface.

In this case, however, we consider only the subsonic problem (V < VT), in order to avoid the presentation of

complicated results, and write

~uuqðq;x; z ¼ 0Þ ¼ ~uuðPÞq ðq;x; z ¼ 0Þ þ ~uuðSÞq ðq;x; z ¼ 0Þ þ ~uuðQÞq ðq;x; z ¼ 0Þ; ð36Þ

where (~uuðPÞq ; ~uuðSÞq ; ~uuðQÞq ) are the individual tangential displacements due to a normal load P , tangential load
S cosx and thermal load KQ, respectively. These displacements are given at the surface by the expressions

~uuðPÞq ðq;x; z ¼ 0Þ ¼ � P sgnðcosxÞ
2l

GðP ÞðMT cosx; eÞsgnðsgnðcosxÞqÞ; ð37Þ

~uuðSÞq ðq;x; z ¼ 0Þ ¼ S cosx
l

GðSÞðMT cosx; eÞ lnðjqjÞ; ð38Þ
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~uuðQÞq ðq;x; z ¼ 0Þ ¼ Qjh

ð1þ eÞ1=2
GðQÞðMT cosx; eÞ lnðjqjÞ; ð39Þ

where the functions of (MT; e) that enter the solution are defined as follows:

GðPÞðMT; eÞ ¼ � ð2�M2
TÞ � 2ð1�M2

LeÞ
1=2ð1�M2

TÞ
1=2

Re
; V < VT; ð40Þ

GðSÞðMT; eÞ ¼
M2

Tð1�M2
TÞ

1=2

pRe
; V < VT; ð41Þ

GðQÞðMT; eÞ ¼ � 2MLeð1�M2
TÞ

1=2

pRe
; V < VT: ð42Þ

Finally, the total temperature change due to mechanical loads is written by superposition as

~hhðq;x; z ¼ 0Þ ¼ ~hhðP Þðq;x; z ¼ 0Þ þ ~hhðSÞðq;x; z ¼ 0Þ; ð43Þ

where (~hhðPÞ; ~hhðSÞ) are the change in temperature due to, respectively, a normal load P and a tangential load

S cosx. These terms at the surface and for the entire velocity range have the following form

~hhðPÞðq;x; z ¼ 0Þ ¼ P e
ljð1þ eÞ LðPÞ1 ðMT cosx; eÞPF 1

qsgnðcosxÞ

� ��
þ LðPÞ2 ðMT cosx; eÞdðqÞ

�
; ð44Þ

~hhðSÞðq;x; z ¼ 0Þ ¼ S cosxsgnðcosxÞe
ljð1þ eÞ LðSÞ1 ðMT cosx; eÞPF 1

qsgnðcosxÞ

� ��
þ LðSÞ2 ðMT cosx; eÞdðqÞ

�
;

ð45Þ
where the functions of (MT; e) now are expressed as follows:

LðPÞ1 ðMT; eÞ ¼

0 � LðPÞ11 ðMT; eÞ; V < VT

� 4M2
Tð2�M2

TÞð1�M2
LeÞ

1=2ðM2
T � 1Þ1=2

pKe
� LðPÞ12 ðMT; eÞ; VT < V < VLe

0 � LðPÞ13 ðMT; eÞ; VLe < V

8>>><
>>>:

; ð46Þ

LðPÞ2 ðMT; eÞ ¼

M2
Tð2�M2

TÞ
Re

� LðPÞ21 ðMT; eÞ; V < VT

M2
Tð2�M2

TÞ
3

Ke
� LðPÞ22 ðMT; eÞ; VT < V < VLe

M2
Tð2�M2

TÞ
We

� LðPÞ23 ðMT; eÞ; VLe < V

8>>>>>>><
>>>>>>>:

; ð47Þ

LðSÞ1 ðMT; eÞ ¼

� 2M2
Tð1�M2

TÞ
1=2

pRe
� LðSÞ11 ðMT; eÞ; V < VT

8M2
TðM2

T � 1Þð1�M2
LeÞ

1=2

pKe
� LðSÞ12 ðMT; eÞ; VT < V < VLe

0 � LðSÞ13 ðMT; eÞ; VLe < V

8>>>>><
>>>>>:

; ð48Þ
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LðSÞ2 ðMT; eÞ ¼

0 � LðSÞ21 ðMT; eÞ; V < VT

� 2M2
Tð2�M2

TÞ
2ðM2

T � 1Þ1=2

Ke
� LðSÞ22 ðMT; eÞ; VT < V < VLe

� 2M2
TðM2

T � 1Þ1=2

We
� LðSÞ23 ðMT; eÞ; VLe < V

8>>>>><
>>>>>:

: ð49Þ

This concludes the presentation of the results for the first auxiliary problem. As mentioned at the be-

ginning of this section, we shall provide now an explanation of the way the results of the �physical� plane-
strain problem in the form obtained by Brock and Georgiadis (1997) have been transferred here and

recorded in the form given above. First, consider the function sgnðxÞ appearing in particular terms of the

solution to the �physical� problem. In order to preserve this behavior in the auxiliary problem, we should
have a Radon transformed solution containing the function sgnðqÞ when x 2 ½0; p=2Þ [ ð3p=2; 2p
 (this is
because the projection, Vq ¼ V cosx, of the velocity V on the q-axis has a positive direction) and the

function sgnð�qÞ when x 2 ðp=2; 3p=2Þ (because now the projection has a negative direction). In a compact

form, the Radon transformed solution (i.e. the solution to the first auxiliary problem) that corresponds to

the behavior sgnðxÞ in the �physical� plane-strain solution is written as sgnðsgnðcosxÞqÞ. Accordingly, Fig.

5a and b depicts the first auxiliary problem and the behavior of the function sgnðsgnðcosxÞqÞ for the special
cases x ¼ 0 and x ¼ p, respectively. Next, by the same token, one may find that the function 1=x appearing
in the solution to the �physical� problem corresponds to the function 1=ðsgnðcosxÞqÞÞ in the solution to the
transformed problem. On the contrary, the other functions ln jqj and dðqÞ do not pose any difficulty because

they are even. Finally, one should take into account the possible influence of the rotation of the coordinate

system upon the direction of the displacements. For instance, the load S in the solution uðSÞz of the �physical�
problem should be taken as the expression S cosxsgnðcosxÞ when the auxiliary problem is considered and

not as the projection Sq � S cosx.

5. Solution of the second auxiliary problem

The solution to the second auxiliary problem, i.e. the surface displacement in the elastic half plane

zP 0 due to a moving anti-plane shear load, is given by Georgiadis and Lykotrafitis (2001). This solution

was obtained by the use of two-sided Laplace transforms and exact inversions. In the anti-plane shear

case, only two speed ranges exist (i.e. the subsonic range jV cosxj < VT and the supersonic jV cosxj > VT
range of the load motion w.r.t. the velocity VT). In the entire regime, the solution is given in a compact
form as

Fig. 5. Schematics for the first auxiliary problem and behavior of the function sgnðsgnðcosxÞqÞ in the cases x ¼ 0 (a) and x ¼ p (b).
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~uuðSÞs ðq;x; z ¼ 0Þ ¼ S sinx
l

½Q1ðMT cosxÞ lnðjqjÞ þ Q2ðMT cosxÞHð�sgnðcosxÞqÞ
; ð50Þ

where Hð Þ is the Heaviside step function, and

Q1ðMTÞ ¼
1

pð1�M2
TÞ

1=2
� Q11ðMTÞ; V < VT

0 � Q12ðMTÞ; V > VT

8<
: ; ð51Þ

Q2ðMTÞ ¼
0 � Q21ðMTÞ; V < VT

� 1

ðM2
T � 1Þ1=2

� Q22ðMTÞ; V > VT

8<
: : ð52Þ

Notice in (50) and for the supersonic case that the argument q of the step function is multiplied by

sgnðcosxÞ in order for the surface disturbances to be always behind the source and not ahead, as the ve-

locity component Vq changes sign in the course of the Radon-transform inversion. Moreover, in utilizing
the physical solution in the transformed plane, one should take into account that the direction of the

displacement ~uus does not depend upon the direction of the motion of the load but does depend upon the

direction of the projection of the shear load Ss � �S sinx.

It is noticed finally that in the case of a vanishing tangential loading in the original 3D problem, i.e. when

(P 6¼ 0, S ¼ 0, Q 6¼ 0), the solution to the second auxiliary problem is ~uusðq;x; z ¼ 0Þ � 0 since
~rrzsðq;x; z ¼ 0Þ ¼ 0 is obviously the proper boundary condition.

6. Inversion procedure and results for the actual problem

Obtaining the 3D solution from the transformed solution given before is accomplished in two steps.
First, the inversion of the coordinate transformation in (17) is performed providing the set (~uuz; ~uux; ~uuy) in
terms of the rotated Radon-transformed displacements (~uuz; ~uuq; ~uus), i.e.

~uuz
~uux
~uuy

0
@

1
A ¼

1 0 0

0 cosx � sinx
0 sinx cosx

0
@

1
A ~uuz

~uuq
~uus

0
@

1
A: ð53Þ

Then, the Radon-transform inversion according to (10) gives the set (uz; ux; uy) in the physical domain.

Finally, from the latter solution, one can calculate the displacements in a system of cylindrical polar co-
ordinates (r;u; z) by using the coordinate transformation (see Fig. 6)

uz
ur
uu

0
@

1
A ¼

1 0 0

0 cosu sinu
0 � sinu cosu

0
@

1
A uz

ux
uy

0
@

1
A ð54Þ

and also evaluate the stresses through (1c).

By using superposition and in order to avoid the presentation of lengthy results and expressions, the

displacements due to the loads (P ; S;Q) will be considered separately. Also, numerical results will be pre-

sented in Section 9.

6.1. Normal displacement uðPÞz due to the normal load P

In this case, the rotation of the original coordinate system (x; y; z) does not affect the transformed
component ~uuz, as is seen from (17a), and therefore the second auxiliary problem does not enter the solution

912 G. Lykotrafitis, H.G. Georgiadis / International Journal of Solids and Structures 40 (2003) 899–940



at all. Accordingly, operating with the inverse Radon transform in Eq. (10) on (21) and using the following

relations from the theory of distributions (see e.g. Roos, 1969; Kanwal, 1998)

osgnðsgnðcosxÞqÞ
oq

¼ 2sgnðcosxÞdðqÞ; ð55Þ

olnðjqjÞ
oq

¼ PF
1

q

� �
; ð56Þ

one obtains

uðPÞz ðr;u; z ¼ 0Þ ¼ � P
4p2l

Z 2p

0

F ðPÞ
1 ðMT cosx; eÞ

Z þ1

�1
PF

1

q

� �
PF

1

q� r cosðx � uÞ

� �
dq

� �� �
dx

�

�
Z 2p

0

sgnðcosxÞF ðP Þ
2 ðMT cosx; eÞ

Z þ1

�1
PF

1

q� r cosðx � uÞ

� �
dðqÞdq

� �� �
dx

�
:

ð57Þ

At this point, we emphasize that any rigid-body displacement terms, which could be added in the RHS of

(21), have been eliminated by differentiation in the course of inverting the Radon transform. Further, the

evaluation of the inner integrals in (57) is accomplished by utilizing additional results from the theory of

distributions (Lauwerier, 1963) that concern the Hilbert transform of generalized functions, i.e.Z þ1

�1
PF

1

q

� �
PF

1

q� r cosðx � uÞ

� �
dq ¼ p2dðr cosðx � uÞÞ; ð58Þ

Z þ1

�1
PF

1

q� r cosðx � uÞ

� �
dðqÞdq ¼ �PF

1

r cosðx � uÞ

� �
: ð59Þ

Using now the above results in (57) gives

uðPÞz ðr;u; z ¼ 0Þ ¼ � P
4l

Z 2p

0

F ðP Þ
1 ðMT cosx; eÞdðr cosðx

h�
� uÞÞ

i
dx

þ
Z 2p

0

sgnðcosxÞF ðP Þ
2 ðMT cosx; eÞPF 1

p2r cosðx � uÞ

� �� �
dx

�
: ð60Þ

Further, the following two properties of the Dirac delta distribution are employed: (i) the sifting property,
and (ii) the property that

Fig. 6. System of cylindrical polar coordinates (r, u, z) and corresponding displacement components.
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d½gðfÞ
 ¼
XN
j¼1

dðf � ajÞ
jg0ðajÞj

;

where gðfÞ is a monotonic real function of f which vanishes at the points f ¼ aj, with (j ¼ 1; 2; . . . ;N ), and
g0ðajÞ are the derivatives at the points f ¼ aj (see e.g. Roos, 1969; Kanwal, 1998). Considering these

properties leads to the value ð2=rÞF ðPÞ
1 ðMT sinuÞ for the first integral in (60). Also, the second integral is

transformed through sectionally monotonic changes of variable as f ¼ sinx. In view of the above, Eq. (60)

takes the form

uðPÞz ðr;u; z ¼ 0Þ ¼ � P
lr

1

2
F ðP Þ
1 ðMT sinu; eÞ

�
þ cosu

p2

Z 1

0

F ðPÞ
2 ðMTð1

�
� f2Þ1=2; eÞPF 1

cos2 u � f2

� �
df

��
:

ð61Þ

The above result is the basic result for the case of a moving normal load. From the expression in (61),

particular results will be obtained below for the entire speed range, i.e. for 0 < V < VRe, VRe < V < VT,
VT < V < VLe and VLe < V . The particular results depend of course upon the forms of the functions F ðP Þ

1 ð Þ
and F ðP Þ

2 ð Þ in each speed range. It is noticed finally that (61) shows that the surface normal displacement

uðPÞz is symmetric w.r.t. the x-axis of motion, and this concurs with the physics of the problem.

• Sub-Rayleigh range (0 < V < VRe):

Here, only the first term in the RHS of (61) contributes, since F ðP Þ
2 ðMTð1� f2Þ1=2; eÞ ¼ 0 for all f 2 ½0; 1
.

Thus, the final result is

uðPÞz ðr;u; z ¼ 0Þ ¼ � P
2lr

F ðPÞ
11 ðMT sinu; eÞ; ð62Þ

where the function F ðP Þ
11 ð Þ is given in (24). One may observe that (62) implies the symmetry of uðP Þz w.r.t.

both axes x and y.

• Super-Rayleigh subsonic range (VRe < V < VT):
The solution is still given by the first term in the RHS of (61). However, as the analysis in Appendix A

indicates, the thermoelastic Rayleigh function vanishes (i.e. ReðMT sinu; eÞ ¼ 0) along the lines defined by

u ¼ �uRe and u ¼ p � uRe on the half-space surface, where uRe ¼ sin�1ðm1=2
1e =MTÞ and 0 < uRe < p=2 with

m1e being the non-trivial zero of ReðMT; eÞ given by (A.2) of Appendix A in terms of the Poisson�s ratio and

the coupling constant of the material. Therefore, the normal displacement uðPÞz is singular along these lines.

This means that solution (61) in its present form predicts two Mach-like Rayleigh wave sectors; one ahead

of the moving source and the other behind (see Fig. 7 showing the top view of the problem). Nevertheless,

as the pertinent radiation condition requires (see e.g. Fung, 1965), only trailing waves of this type should

exist. This statement is also supported by the observation of Barber (1996), in dealing with the respective
�pure mechanical� problem, that the steady-state problem should be viewed as the long-time limit of a

transient problem, in which the point load (that moves with a super-Rayleigh velocity) is suddenly applied

to an initially quiescent half space, and therefore, one should expect in such a problem the existence of

Rayleigh-wave disturbances behind but not ahead of the load.

In view of the above, we write the corrected solution in this speed range by also taking into account the

following three points: (i) The final solution should retain an r�1 dependence. This was indicated by Willis

(1966), in general 3D problem with concentrated loads, who observed that equilibrium demands that the

stress field must vary as r�2 from the point of application of the force, and therefore, that the displacement
field must vary as r�1. (ii) The expression given by the first term of (61) exhibits symmetry both w.r.t. the

axes x and y, whereas the final solution should retain symmetry only w.r.t. the x-axis. (iii) The correction
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added should eliminate the thermoelastic Rayleigh-wave disturbance ahead of the load. Therefore, the final

solution is written as

uðPÞz ðr;u; z ¼ 0Þ ¼ � P
2l

1

r
F ðPÞ
11 ðMT sinu; eÞ

�
þ X
r sinðu � uReÞ

� X
r sinðu þ uReÞ

�
; ð63Þ

where X is a yet unknown constant. Following the relative procedure by Barber (1996), this constant can be
determined as follows.

First, we notice from Eqs. (24), (30) and (32) in the main text and Eq. (A.1) in Appendix A that the

function F ðPÞ
11 ðMT; eÞ can be written as

F ðPÞ
11 ðMT; eÞ ¼

ð1�M2
LeÞ

1=2½ð2�M2
TÞ

2 þ 4ð1�M2
LeÞ

1=2ð1�M2
TÞ

1=2

pðM2

T � m1eÞðM2
T � m2eÞðM2

T � m3eÞ
; ð64Þ

where mje, with (j ¼ 1, 2, 3), are the non-trivial zeroes of the function Ke whose expressions are given in

Appendix A. Next, the following definitions are introduced

AðMT; eÞ �
4ð1�M2

LeÞQ3

j¼1ðM2
T � mjeÞ

; BðMT; eÞ �
ð2�M2

TÞ
2Q3

j¼1ðM2
T � mjeÞ

ð65a; bÞ

and the functions (A;B) are subsequently written as sums of partial fractions through the use of the forms

provided in Eqs. (A.5) and (A.6) of Appendix A. In view of the above, F ðPÞ
11 ðMT; eÞ in (64) takes the fol-

lowing form, which can directly lead to the determination of the constant X through canceling of the terms

that generate the unacceptable Rayleigh-wave singularities

F ðPÞ
11 ðMT sinu; eÞ ¼ 1

p

X3
j¼1

Ajð1�M2
T sin

2 uÞ1=2

ðM2
T sin

2 u � mjeÞ
þ 1

p

X3
j¼1

Bjð1�M2
Le sin

2 uÞ1=2

ðM2
T sin

2 u � mjeÞ
; ð66Þ

where the new constants (Aj, Bj), with (j ¼ 1, 2, 3), are given in Eqs. (A.11) and (A.12) of Appendix A and

solely depend upon the Poisson�s ratio and the coupling constant of the material. Finally, in view of (66)

and the definition of uRe, (63) becomes

uðPÞz ðr;u; z ¼ 0Þ ¼ � P
2lpr

X3
j¼1

Ajð1�M2
T sin

2 uÞ1=2

ðM2
T sin

2 u � mjeÞ

"
þ
X3
j¼1

Bjð1�M2
Le sin

2 uÞ1=2

ðM2
T sin

2 u � mjeÞ
þ 2Xm1=2

1e MT cosu

M2
T sin

2 u � m1e

#
:

ð67Þ

Fig. 7. Mach-like Rayleigh wave �sectors�. Only the trailing Rayleigh wavefronts (continuous lines) are acceptable in view of the ra-

diation condition.
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From the above form, it is clear now that X should be chosen so that the terms corresponding to j ¼ 1 to be

canceled along the Rayleigh wave singularities ahead of the load, that is for u ¼ �uRe. In this way, by

solving the equation

A1ð1�M2
T sin

2 uReÞ
1=2 þ B1ð1� m�2M2

T sin
2 uReÞ

1=2 þ 2Xm1=2
1 MT cosuRe ¼ 0; ð68Þ

we obtain the appropriate value of X as

X ¼ �MTð1� m�2
e m1eÞ1=2½ð2� m1eÞ2 þ 4ð1� m1eÞ1=2ð1� m�2

e m1eÞ1=2

2m1=2

1e MTðM2
T � m1eÞ1=2ðm1e � m2eÞðm1e � m3eÞ

: ð69Þ

Further, from (67) the final solution in the range VR < V < VT is obtained as

uðPÞz ðr;u; z ¼ 0Þ ¼ � P
2lpr

pF ðPÞ
11 ðMT sinu; eÞ

"

�MT cosuð1� m�2
e m1eÞ1=2½ð2� m1eÞ2 þ 4ð1� m1eÞ1=2ð1� m�2

e m1eÞ1=2

ðM2

T sin
2 u � m1eÞðM2

T � m1eÞ1=2ðm1e � m2eÞðm1e � m3eÞ

#
: ð70Þ

• Transonic range (VT < V < VLe):

In this case, both terms in the RHS of (61) contribute. Also, the functions F ðPÞ
1 ðMT sinu; eÞ and

F ðPÞ
2 ðMT sinu; eÞ because of (24), (25), (64), (65a,b) and (A.1) are written as

pF ðPÞ
1 ðMT sinu; eÞ ¼ AðMT sinu; eÞð1�M2

T sin
2 uÞ1=2HðVT � V j sinujÞ

þ BðMT sinu; eÞð1�M2
Le sin

2 uÞ1=2; ð71aÞ

F ðPÞ
2 ðMTð1� f2Þ1=2; eÞ ¼ AðMTð1� f2Þ1=2; eÞðM2

T �M2
Tf

2 � 1Þ1=2HðV ð1� f2Þ1=2 � VTÞ: ð71bÞ

Substituting then (71) in (61) provides

uðPÞz ðr;u; z ¼ 0Þ ¼ � P
2lpr

½AðMT sinu; eÞð1�M2
T sin

2 uÞ1=2HðVT � V j sinujÞ þ BðMT sinu; eÞ

� ð1�M2
Le sin

2 uÞ1=2
 � P cosu
lp2r

Z ½1�ð1=M2
T
Þ
1=2

0

AðMTð1� f2Þ1=2; eÞðM2
T �M2

Tf
2 � 1Þ1=2

� PF
1

cos2 u � f2

� �
df: ð72Þ

An analysis now of the integral in the RHS of (72) is provided and this shows that the integral is a well-

defined Cauchy principal-value integral. In view of (65a), the following points are noted about the integral:

(i) The analysis in Appendix A shows that the zero of the term M2
T � m1e �M2

Tf
2 lies outside the integra-

tion interval. (ii) The terms M2
T � mje �M2

Tf
2, with (j ¼ 2, 3), do not have zeroes in this velocity regime

because it is valid that m3e > m2e > M2
T, as shown in Appendix A. (iii) Along those angles u defined by

cos2 u ¼ 0, the integral diverges but because of the concurrent vanishing of the coefficient cosu the integral

term in (72) eventually vanishes. (iv) Along those angles u defined by cos2 u ¼ ½1� ð1=M2
TÞ
 (these angles

correspond to the shear Mach wavefronts), the integrand exhibits an integrable behavior and varies as

ð½1� ð1=M2
TÞ


1=2 � fÞ�1=2
.

The above analysis reveals therefore that the integrand in (72) exhibits only one pole at f ¼ j cosuj, and
the associated integral is a Cauchy principal-value integral contributing no singularity in the displacement.

The only singularity in (72) stems from the first term of this expression and is associated with thermoelastic
Rayleigh wavefronts. As in the previous super-Rayleigh/subsonic case, these wavefronts extend both ahead
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of the load and behind the load. We can work therefore as before to eliminate the singularity ahead of the

moving load. The first term in (72) also indicates the existence of trailing shear Mach wavefronts since it

contains the Heaviside step function HðVT � V j sinujÞ. In view of the above, the final expression for the

surface normal displacement uðPÞz due to a normal load P moving in the transonic range is found to be

uðP Þz ðr;u; z¼ 0Þ ¼ � P
2lpr

AðMT sinu; eÞð1
"

�M 2
T sin

2 uÞ1=2HðVT � V j sinujÞ þ BðMT sinu; eÞ

� ð1�M2
Le sin

2 uÞ1=2 �MT cosuð1�m�2
e m1eÞ1=2½ð2�m1eÞ2 þ 4ð1�m1eÞ1=2ð1�m�2

e m1eÞ1=2

ðM2

T sin
2 u�m1eÞðM2

T �m1eÞ1=2ðm1e �m2eÞðm1e �m3eÞ

#

� P cosu
lp2r

Z ½1�ð1=M2
T
Þ
1=2

0

AðMTð1� f2Þ1=2; eÞðM2
T �M 2

Tf
2 � 1Þ1=2PF 1

cos2 u� f2

� �
df:

ð73Þ

The Cauchy principal-value integral in (73) and all other integrals obtained below as analytical solutions

were evaluated by using the numerical algorithms of the program MATHEMATICAe. In all cases ana-
lytical considerations are provided to show that these integrals are amenable to a direct numerical treat-

ment. Numerical results are given in Section 9.

• Supersonic range (VLe < V ):
Substituting (24) and (25) in the basic result (61) and taking into account (65) and (A.1), the following

expression is obtained

uðPÞz ðr;u; z ¼ 0Þ ¼ � P
2lpr

½AðMT sinu; eÞð1�M2
T sin

2 uÞ1=2HðVT � V j sinujÞ þ BðMT sinu; eÞ

� ð1�M2
Le sin

2 uÞ1=2HðVLe � V j sinujÞ
 � P cosu
lp2r

Z ½1�ð1=M2
LeÞ


1=2

0

½AðMTð1� f2Þ1=2; eÞ

� ðM2
T �M2

Tf
2 � 1Þ1=2 þ BðMTð1� f2Þ1=2; eÞðM2

Le �M2
Lef

2 � 1Þ1=2
PF 1

cos2 u� f2

� �
df

� P cosu
lp2r

Z ½1�ð1=M2
T
Þ
1=2

½1�ð1=M2
Le
Þ
1=2

AðMTð1� f2Þ1=2; eÞðM2
T �M2

Tf
2 � 1Þ1=2PF 1

cos2 u� f2

� �
df:

ð74Þ

In the RHS of (74), the first term with the two Heaviside step functions clearly exhibits the appearance of

the longitudinal and shear Mach wavefronts. However, the second and third terms (integral terms) require

a more careful analysis.

For the first integral the following points are noticed. (i) Relation (34) and the analysis in Appendix A

indicate that m1e < m2
e and, therefore, the termM2

T � m1e �M2
Tf

2 has no zeros inside the integration interval.

(ii) The analysis in Appendix A indicates that the zerosm2e andm3e of the function KeðMT; eÞ are real numbers
when the material constant me defined in (35) satisfies the inequalities 06 me 6 m0 � 0:2630820648 . . . In ad-

dition, in the supersonic regime, the inequalities m2e < M2
T and/or m3e < M2

T may be satisfied and, accord-

ingly, the zeroes of the terms M2
T � mje �M2

Tf
2, with (j ¼ 2, 3), may lie within the integration interval.

Nevertheless, it can be shown that these points correspond to removable singularities. (iii) Along the lines

defined by cos2 u ¼ ½1� ð1=M2
LeÞ
, which correspond to the longitudinal Mach wavefronts, the integrand

remains integrable since it behaves as ð½1� ð1=M2
LeÞ


1=2 � fÞ�1=2
at the upper integration limit.

For the second integral now, the following points are of notice. (i) The zeroes of the term M2
T � m1e�

M2
Tf

2 lie outside the integration interval, since m1e < 1. (ii) The zeros of the terms M2
T � mje �M2

Tf
2, with

(j ¼ 2, 3), lie outside the integration interval. (iii) Along the shear Mach wavefront (upper integration
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limit), the integrand behaves like an inverse square root and is, therefore, integrable. Along the longitudinal

Mach wavefront, the integrand is smooth.

Finally, we observe that in the two integrands of (74) only one pole appears at the point f ¼ j cosuj.
Therefore, the integrals can be evaluated in the Cauchy principal-value sense without any particular diffi-
culty. In view of the above observations, it is concluded that there are no other singularities for the surface

normal displacement uðP Þz ðr;u; z ¼ 0Þ except for the Rayleigh-type singularity exhibited by the first (non-

integral) term of (74). This singularity is due to the functions AðMT sinu; eÞ and BðMT sinu; eÞ. Following
the same procedure as in the cases of super-Rayleigh/subsonic and transonic ranges treated before, the final

form of the solution in the supersonic range is found to be

uðPÞz ðr;u; z ¼ 0Þ ¼ � P
2lpr

AðMT sinu; eÞð1
"

� M2
T sin

2 uÞ1=2HðVT � V j sinujÞ þ BðMT sinu; eÞ

� ð1� M2
Le sin

2 uÞ1=2HðVLe � V j sinujÞ

�MT cosuð1� m�2
e m1eÞ1=2½ð2� m1eÞ2 þ 4ð1� m1eÞ1=2ð1� m�2

e m1eÞ1=2

ðM2

T sin
2 u � m1eÞðM2

T � m1eÞ1=2ðm1e � m2eÞðm1e � m3eÞ

#

� P cosu
lp2r

Z ½1�ð1=M2
LeÞ


1=2

0

BðMTð1� f2Þ1=2; eÞðM2
Le �M2

Lef
2 � 1Þ1=2PF 1

cos2 u � f2

� �
df

� P cosu
lp2r

Z ½1�ð1=M2
LeÞ


1=2

0

AðMTð1� f2Þ1=2; eÞðM2
T �M2

Tf
2 � 1Þ1=2PF 1

cos2 u � f2

� �
df

� P cosu
lp2r

Z ½1�ð1=M2
T
Þ
1=2

½1�ð1=M2
Le
Þ
1=2

AðMTð1� f2Þ1=2; eÞðM2
T �M2

Tf
2 � 1Þ1=2PF 1

cos2 u � f2

� �
df:

ð75Þ

With the above expression, the presentation of results for the surface normal displacement uðPÞz is concluded.

In the limit as e ! 0, i.e. as thermal effects are eliminated, these results take the form of the results for the

�pure mechanical� problem of a normal load moving over the surface of an elastic half space (Georgiadis

and Lykotrafitis, 2001). Notice also that the results of Georgiadis and Lykotrafitis (2001) agree with the

ones of Lansing (1966) and Barber (1996) in the entire speed range, and with the sub-Rayleigh results of

Eason (1965), who restricted himself in a sub-Rayleigh analysis of the problem only.

6.2. Vertical displacement uðSÞz due to the tangential load S

We operate again with the inverse Radon transform on (22) and proceed as in the previous case of the

normal load obtaining the following basic result

uðSÞz ðr;u; z ¼ 0Þ ¼ � S
2lr

F ðSÞ
1 ðMT sinu; eÞj sinuj � S cosu

lp2r

�
Z 1

0

F ðSÞ
2 ðMTð1� f2Þ1=2; eÞð1� f2Þ1=2PF 1

cos2 u � f2

� �
df: ð76Þ

From this expression, particular results will be obtained below for the entire speed regime, i.e. for

0 < V < VRe, VRe < V < VT, VT < V < VLe and VLe < V . These results will depend of course upon the par-

ticular forms of the functions F ðSÞ
1 ð Þ and F ðSÞ

2 ð Þ in each speed range. One may observe finally that Eq. (76)
clearly exhibits the required symmetry of uðSÞz w.r.t. the x-axis.
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• Sub-Rayleigh range (0 < V < VRe):

In this range, only the integral in (76) contributes, because F ðSÞ
11 ðMT sinuÞ ¼ 0 for all angles u, giving the

result

uðSÞz ðr;u; z ¼ 0Þ ¼ � S cosu
lp2r

Z 1

0

½CðMTð1� f2Þ1=2; eÞ þ DðMTð1� f2Þ1=2; eÞð1�M2
T þM2

Tf
2Þ1=2

� ð1�M2
Le þM2

Lef
2Þ1=2
ð1� f2Þ1=2PF 1

cos2 u � f2

� �
df; ð77Þ

where

CðMT; eÞ ¼
ð8m�2

e � 4Þ þ ð6� 8m�2
e ÞM2

T �M4
TQ3

j¼1ðM2
T � mjeÞ

; DðMT; eÞ ¼
2ð2�M2

TÞQ3

j¼1ðM2
T � mjeÞ

: ð78a; bÞ

If we set e ¼ 0 in (77), the respective results of Eason (1965) and Georgiadis and Lykotrafitis (2001) are

recovered.

• Super-Rayleigh subsonic range (VRe < V < VT):
In this case, examining (76) reveals that there are two poles at the points f ¼ ½1� ðm1e=M2

TÞ

1=2

and

f ¼ j cosuj. No additional poles arise since the terms M2
T � mje �M2

Tf
2, with (j ¼ 2, 3), exhibit no zeros (see

Appendix A). One therefore may obtain

uðSÞz ðr;u; z ¼ 0Þ ¼ � S cosu
lp2r

Z 1

0

½C�ðMTð1� f2Þ1=2; eÞ þ D�ðMTð1� f2Þ1=2; eÞð1�M2
T þM2

Tf
2Þ1=2

� ð1�M2
Le þM2

Lef
2Þ1=2
ð1� f2Þ1=2PF 1

M2
T � m1e �M2

Tf
2

 !
PF

1

cos2 u � f2

� �
df;

ð79Þ

where

C�ðMT; eÞ ¼ CðMT; eÞðM2
T � m1eÞ; D�ðMT; eÞ ¼ DðMT; eÞðM2

T � m1eÞ: ð80a; bÞ

For those angles that the two poles in the integrand of (79) do not coincide, no difficulty arises for the

numerical evaluation of the integral. The two poles coincide when cos2 u ¼ ½1� ðm1e=M2
TÞ
, which are di-

rections corresponding to the Rayleigh Mach wavefronts. A double pole then arises and the solution takes

the form

uðSÞz ðr;u; z ¼ 0Þ ¼ � S cosu
lp2r

Z 1

0

½C�ðMTð1� f2Þ1=2; eÞ þ D�ðMTð1� f2Þ1=2; eÞð1�M2
T þM2

Tf
2Þ1=2

� ð1�M2
Le þM2

Lef
2Þ1=2
ð1� f2Þ1=2 1

M2
T

PF
1

ð½1� ðm1e=M2
TÞ
 � f2Þ2

 !
df; ð81Þ

where PFð Þ denotes now the finite-part (or second-order principal-part) pseudo-function or distribution

(see e.g. Roos, 1969; Kanwal, 1998). In other words, the integral in (81) should be interpreted as a Had-

amard finite-part integral in the sense that

hPFð1=x2Þ;/i ¼ lim
s!0

Z
jxjP s

/ðxÞ � /ð0Þ
x2

dx:
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Equivalently, the second-order principal-part pseudo-function is the negative of the derivative of the

principal-value pseudo-function, i.e. PFð1=x2Þ ¼ �PF0ð1=xÞ. In view of the above, the displacement uðSÞz
given by (81) remains bounded even along the Rayleigh wavefronts.

• Transonic range (VT < V < VLe):

One may work as in the latter case and combine now Eqs. (26), (27), (76), (78) and (80). The result is

uðSÞz ðr;u; z ¼ 0Þ ¼ Sj sinuj
2lpr

DðMT sinu; eÞð1�M2
Le sin

2 uÞ1=2ðM2
T sin

2 u � 1Þ1=2H j sinuj
�

� 1

MT

�

� S cosu
lp2r

Z 1

0

C�ðMTð1
"

� f2Þ1=2; eÞð1� f2Þ1=2PF 1

M2
T � m1e �M2

Tf
2

 !

� PF
1

cos2 u � f2

� �
df þ

Z 1

½1�ð1=M2
T
Þ
1=2

D�ðMTð1� f2Þ1=2; eÞð1�M2
T þM2

Tf
2Þ1=2

� ð1�M2
Le þM2

Lef
2Þ1=2ð1� f2Þ1=2PF 1

M2
T � m1e �M2

Tf
2

 !
PF

1

cos2 u � f2

� �
df

#
:

ð82Þ

The first integrand in (82) exhibits poles at the points f ¼ ½1� ðm1e=M2
TÞ


1=2
and f ¼ j cosuj. The second

integrand exhibits always a pole at f ¼ ½1� ðm1e=M2
TÞ


1=2
, and a pole at f ¼ j cosuj only when

cos2 u > ½1� ð1=M2
TÞ
. Both integrals are evaluated as Cauchy principal-value integrals.

• Supersonic range (VLe < V ):
Here, Eqs. (26), (27), (76), (78) and (80) provide

uðSÞz ðr;u; z ¼ 0Þ ¼ Sj sinuj
2lpr

DðMT sinu; eÞð1�M2
Le sin

2 uÞ1=2ðM2
T sin

2 u � 1Þ1=2

� H j sinuj
��

� 1

MT

�
� H j sinuj

�
� 1

MLe

��

� S cosu
lp2r

Z 1

0

CðMTð1
"

� f2Þ1=2; eÞð1� f2Þ1=2PF 1

cos2 u � f2

� �
df

�
Z ½1�ð1=M2

LeÞ

1=2

0

DðMTð1� f2Þ1=2; eÞðM2
T �M2

Tf
2 � 1Þ1=2ðM2

Le �M2
Lef

2 � 1Þ1=2

� ð1� f2Þ1=2PF 1

cos2 u � f2

� �
df þ

Z 1

½1�ð1=M2
T
Þ
1=2

DðMTð1� f2Þ1=2; eÞ

� ð1�M2
T þM2

Tf
2Þ1=2ð1�M2

Le þM2
Lef

2Þ1=2ð1� f2Þ1=2PF 1

cos2 u � f2

� �
df

#
: ð83Þ

As for the numerical evaluation of (83), one encounters no difficulties except in the case that the material

constant me is in the range 06 me 6 m0. This is because the zeros of the function KeðMT; eÞ are real and,

therefore, the integrands in the integration intervals ½0; 1
 and ½0; ð1� 1=M2
LeÞ

1=2
 may exhibit more than two

distinct poles. Since this case poses a difficulty in the numerical treatment, we should write the terms

CðMTð1� f2Þ1=2; eÞ and DðMTð1� f2Þ1=2; eÞ as partial fractions according to Eqs. (A.7), (A.8), (A.13) and

(A.14) of Appendix A. In this way, the first two integrals in (83), say I1 and I2, are written in the following
forms that are convenient for numerical treatment

920 G. Lykotrafitis, H.G. Georgiadis / International Journal of Solids and Structures 40 (2003) 899–940



I1 ¼
X3
j¼1

Cj

Z 1

0

PF
1

M2
T � mje �M2

Tf
2

 !
PF

1

cos2 u � f2

� �
ð1� f2Þ1=2 df; ð84Þ

I2 ¼
X3
j¼1

Dj

Z ½1�ð1=M2
LeÞ


1=2

0

PF
1

M2
T � mje �M2

Tf
2

 !
ðM2

T �M2
Tf

2 � 1Þ1=2ðM2
Le �M2

Lef
2 � 1Þ1=2ð1� f2Þ1=2

� PF
1

cos2 u � f2

� �
df; ð85Þ

where the constants (Cj, Dj) are given in Eqs. (A.13) and (A.14) of Appendix A. These constants are ex-

pressed in terms of the non-trivial zeroes (m1e;m2e;m3e) of the function Ke and depend solely upon the

Poisson�s ratio and the coupling constant of the material.

6.3. Normal displacement uðQÞz due to the heat source KQ

Working as in the previous cases and operating with (10) on (23), one may get the following result, which

holds for the entire velocity range

uðQÞz ðr;u; z ¼ 0Þ ¼ � Qjh

2ð1þ eÞ1=2r
F ðQÞ
1 ðMT sinu; eÞsgnðsinuÞ

� Qjh cosu

ð1þ eÞ1=2p2r

Z 1

0

F ðQÞ
2 ðMTð1� f2Þ1=2; eÞPF 1

cos2 u � f2

� �
df: ð86Þ

As usual, from this general expression specific results in forms that allow direct numerical evaluation will be

obtained in each particular range. One may observe that the form in (86) bears resemblance with the res-

pective form giving uðSÞz , so no details for the present case are given below and only the final expressions are

recorded.

• Sub-Rayleigh range (0 < V < VRe):

In this case, only the integral term in (86) contributes to uðQÞz since F ðQÞ
1 ðMT sinu; eÞ ¼ 0. Then, we

multiply both the numerator and denominator of the integrand by the function ð2�M2
T þM2

Tf
2Þ2 þ

4ð1�M2
T þM2

Tf
2Þ1=2ð1�M2

Le þM2
Lef

2Þ1=2 and use Eq. (A.1) of Appendix A obtaining the result

uðQÞz ðr;u; z ¼ 0Þ ¼ � Qjh cosu

ð1þ eÞ1=2p2r

Z 1

0

EðMTð1� f2Þ1=2; eÞMLeð1� f2Þ1=2PF 1

cos2 u � f2

� �
df

� Qjh cosu

ð1þ eÞ1=2p2r

Z 1

0

NðMTð1� f2Þ1=2; eÞð1�M2
T þM2

Tf
2Þ1=2ð1�M2

Le þM2
Lef

2Þ1=2

�MLeð1� f2Þ1=2PF 1

cos2 u � f2

� �
df; ð87Þ

where

EðMT; eÞ ¼
ð2�M2

TÞ
3Q3

j¼0ðM2
T � mjeÞ

; NðMT; eÞ ¼
4ð2�M2

TÞQ3

j¼0ðM2
T � mjeÞ

; ð88a; bÞ

with m0e ¼ 0.
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• Super-Rayleigh/subsonic range (VRe < V < VT):

uðQÞz ðr;u; z ¼ 0Þ ¼ � Qjh cosu

ð1þ eÞ1=2p2r

Z 1

0

E�ðMTð1� f2Þ1=2; eÞMLeð1� f2Þ1=2PF 1

M2
T � m1e �M2

Tf
2

 !

� PF
1

cos2 u � f2

� �
df � Qjh cosu

ð1þ eÞ1=2p2r

Z 1

0

N �ðMTð1� f2Þ1=2; eÞð1�M2
T þM2

Tf
2Þ1=2

� ð1�M2
Le þM2

Lef
2Þ1=2MLeð1� f2Þ1=2PF 1

M2
T � m1e �M2

Tf
2

 !
PF

1

cos2 u � f2

� �
df;

ð89Þ

where

E�ðMT; eÞ ¼ EðMT; eÞðM2
T � m1eÞ; N �ðMT; eÞ ¼ NðMT; eÞðM2

T � m1eÞ: ð90a; bÞ

• Transonic range (VT < V < VLe):

uðQÞz ðr;u; z ¼ 0Þ ¼ Qjh sinu

2ð1þ eÞ1=2pr
NðMT sinu; eÞMLeð1�M2

Le sin
2 uÞ1=2ðM2

T sin
2 u � 1Þ1=2

� H j sinuj
�

� 1

MT

�
� Qjh cosu

ð1þ eÞ1=2p2r

Z 1

0

E�ðMTð1� f2Þ1=2; eÞMLeð1� f2Þ1=2

� PF
1

M2
T � m1e �M2

Tf
2

 !
PF

1

cos2 u � f2

� �
df � Qjh cosu

ð1þ eÞ1=2p2r

�
Z 1

½1�ð1=M2
T
Þ
1=2

N �ðMTð1� f2Þ1=2; eÞð1�M2
T þM2

Tf
2Þ1=2ð1�M2

Le þM2
Lef

2Þ1=2

�MLeð1� f2Þ1=2PF 1

M2
T � m1e �M2

Tf
2

 !
PF

1

cos2 u � f2

� �
df: ð91Þ

• Supersonic range (VLe < V ):

uðQÞz ðr;u; z ¼ 0Þ ¼ Qjh sinu

2ð1þ eÞ1=2pr
NðMT sinu; eÞMLeð1�M2

Le sin
2 uÞ1=2ðM2

T sin
2 u � 1Þ1=2

� H j sinuj
��

� 1

MT

�
� H j sinuj

�
� 1

MLe

��
� Qjh cosu

ð1þ eÞ1=2p2r

Z 1

0

E�ðMTð1� f2Þ1=2; eÞ

�MLeð1� f2Þ1=2PF 1

M 2
T � m1e �M2

Tf
2

 !
PF

1

cos2 u � f2

� �
df þ Qjh cosu

ð1þ eÞ1=2p2r

�
Z ½1�ð1=M2

LeÞ

1=2

0

NðMTð1� f2Þ1=2; eÞðM2
T �M2

Tf
2 � 1Þ1=2ðM2

Le �M2
Lef

2 � 1Þ1=2

�MLeð1� f2Þ1=2PF 1

cos2 u � f2

� �
df � Qjh cosu

ð1þ eÞ1=2p2r

Z 1

½1�ð1=M2
T
Þ
1=2

N �ðMTð1� f2Þ1=2; eÞ

� ð1�M2
T þM2

Tf
2Þ1=2ð1�M2

Le þM2
Lef

2Þ1=2MLeð1� f2Þ1=2

� PF
1

M2
T � m1e �M2

Tf
2

 !
PF

1

cos2 u � f2

� �
df: ð92Þ

Nevertheless, in the case of poles at the points f ¼ ½1� ðmje=M2
TÞ


1=2
, with (j ¼ 2, 3), the first and the second

integral, say I3 and I4, are written in the following forms that facilitate their numerical evaluation
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I3 ¼
X3
j¼0

Ej

Z 1

0

PF
1

M2
T � mje �M2

Tf
2

 !
PF

1

cos2 u � f2

� �
MLeð1� f2Þ1=2 df; ð93Þ

I4 ¼
X3
j¼0

Nj

Z ½1�ð1=M2
LeÞ


1=2

0

PF
1

M2
T � mje �M2

Tf
2

 !
ðM2

T �M2
Tf

2 � 1Þ1=2ðM2
Le �M2

Lef
2 � 1Þ1=2MLeð1� f2Þ1=2

� PF
1

cos2 u � f2

� �
df; ð94Þ

where the constants Ej and Nj, with (j ¼ 0, 1, 2, 3, 4), are defined in (A.15) and (A.16) of Appendix A.

Again, these constants are expressed in terms of the non-trivial zeroes (m1e;m2e;m3e) of the function Ke.

7. Additional results: tangential displacements

In general, the tangential displacements (ux; uy) can be found by operating with the inverse Radon

transform in (10) on the transformed displacements (~uux; ~uuy). The latter expressions result, of course, from

(53) and the expressions for (~uuq; ~uus). Then, the components (ur; uu) in the cylindrical polar coordinate system

may readily be obtained through the coordinate transformation (54). As before, the displacements will be

obtained separately for the cases of vertical and tangential loading.

7.1. Tangential displacements due to the vertical load P

In this case, the solution to the first auxiliary problem is given by (37) and (40), whereas the solution to

the second auxiliary problem is ~uusðq;x; z ¼ 0Þ ¼ 0 since the boundary condition associated with (14) is
~rrzsðq;x; z ¼ 0Þ ¼ 0. Accordingly, the following Radon transformed solutions are obtained

~uuðPÞx ðq;x; z ¼ 0Þ ¼ � P sgnðcosxÞ cosx
2l

GðPÞðMT cosx; eÞsgnðsqnðcosxÞqÞ; ð95Þ

~uuðPÞy ðq;x; z ¼ 0Þ ¼ � P sgnðcosxÞ sinx
2l

GðP ÞðMT cosx; eÞsgnðsqnðcosxÞqÞ ð96Þ

and further from (10), (55) and (59) and by the change of variable f ¼ sinx, the tangential (horizontal)

displacements are obtained as

uðPÞx ðr;u; z ¼ 0Þ ¼ � P cosu
lp2r

Z 1

0

GðPÞðMTð1� f2Þ1=2; eÞð1� f2Þ1=2PF 1

cos2 u � f2

� �
df; ð97Þ

uðPÞy ðr;u; z ¼ 0Þ ¼ P sinu
lp2r

Z 1

0

GðP ÞðMTð1� f2Þ1=2; eÞ f2

ð1� f2Þ1=2
PF

1

cos2 u � f2

� �
df; ð98Þ

where

GðP ÞðMTð1� f2Þ1=2; eÞ ¼ �CðMTð1� f2Þ1=2; eÞ � DðMTð1� f2Þ1=2; eÞ
� ð1�M2

T þM2
Tf

2Þ1=2ð1�M2
Le þM2

Lef
2Þ1=2: ð99Þ

One may observe now that the expression for uðPÞx coincides with that for uðSÞz , the latter being given by
(77). This is not surprising in view of the dynamic version of the Betti–Rayleigh reciprocal theorem. Notice

also that an opposite sign in the two expressions is due to the different direction of the loads w.r.t. the
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corresponding displacements. In view of this observation, the analysis concerning uðSÞz in the subsonic range

is carried over the case of uðPÞx as well. An inspection also on (97) and (98) reveals that both uðPÞx and uðPÞy do

not exhibit thermoelastic Mach-type Rayleigh wavefronts. Eqs. (97) and (98) apply for both the sub-

Rayleigh and super-Rayleigh/subsonic cases.
Finally, from (54), (97) and (98), the displacement components in a system of cylindrical polar coordi-

nates (r;u; z) (see Fig. 6) are found to be

uðPÞr ðr;u; z ¼ 0Þ ¼ � P
lp2r

Z 1

0

GðP ÞðMTð1� f2Þ1=2; eÞ 1

ð1� f2Þ1=2
df; ð100Þ

uðPÞu ðr;u; z ¼ 0Þ ¼ P cosu sinu
lp2r

Z 1

0

GðPÞðMTð1� f2Þ1=2; eÞ 1

ð1� f2Þ1=2
PF

1

cos2 u � f2

� �
df: ð101Þ

Eq. (100), in particular, shows that the radial displacement at the surface uðP Þr has no angular dependence.

This result at first glance looks somewhat surprising but is in agreement with the respective result of the

�pure mechanical� case (Lansing, 1966; Georgiadis and Lykotrafitis, 2001). Also, the other component uðPÞu is

anti-symmetric w.r.t. both axes x and y, and vanishes along lines on the surface defined by the angles u ¼ 0,
p=2, p, 3p=2.

7.2. Tangential displacements due to the tangential load S

In this case, the second auxiliary problem does enter the 3D solution. Indeed, solutions (38) and (50) for
~uuðSÞq and ~uuðSÞs , respectively, provide through (53) the Radon transformed displacements

~uuðSÞx ðq;x; z ¼ 0Þ ¼ � S
l
½Q1ðMT cosxÞ sin2 x � GðSÞðMT cosx; eÞ cos2 x
 lnðjqjÞ; ð102Þ

~uuðSÞy ðq;x; z ¼ 0Þ ¼ S cosx sinx
l

½Q1ðMT cosxÞ þ GðSÞðMT cosx; eÞ
 lnðjqjÞ; ð103Þ

where the functions of the Mach number MT, GðSÞðMT; eÞ and Q1ðMTÞ are given in (41) and (51), respec-

tively. Then, combining the latter equations and (10), (56) and (59) leads to the tangential displacements in

the subsonic range

uðSÞx ðr;u; z ¼ 0Þ ¼ S
2lr

½Q11ðMT sinuÞ cos2 u � GðSÞðMT sinu; eÞ sin2 u
; ð104Þ

uðSÞy ðr;u; z ¼ 0Þ ¼ S cosu sinu
2lr

½Q11ðMT sinuÞ þ GðSÞðMT sinu; eÞ
: ð105Þ

In addition, applying (54) to (104) and (105) yields

uðSÞr ðr;u; z ¼ 0Þ ¼ S cosu
2lr

Q11ðMT sinuÞ; ð106Þ

uðSÞu ðr;u; z ¼ 0Þ ¼ S sinu
2lr

GðSÞðMT sinu; eÞ: ð107Þ

Below, the sub-Rayleigh and the super-Rayleigh/subsonic cases will be treated separately.

• Sub-Rayleigh range (0 < V < VRe):
Here, the displacements can be calculated from (104)–(107). It is of notice that uðSÞx and uðSÞy are symmetric

and anti-symmetric, respectively, w.r.t. both axes x and y.
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• Super-Rayleigh subsonic range (VRe < V < VT):
In this case, solutions (104) and (105) exhibit singular behavior along the Rayleigh wavefronts, where

RðMT sinuÞ ¼ 0. In this form, the solutions give two Rayleigh sectors; one ahead of the load S and the other

behind. Since only trailing Rayleigh waves are acceptable by the radiation condition, the sector ahead of the
load should be eliminated. Following the same reasoning as in the respective case of uðPÞz (see Section 6.1),

we write the corrected solutions as

uðSÞx ðr;u; z ¼ 0Þ ¼ S
2l

1

r
Q11ðMT sinuÞ cos2 u

�
� GðSÞðMT sinu; eÞ sin2 u

þ U
r sinðu � uReÞ

� U
r sinðu þ uReÞ

�
; ð108Þ

uðSÞy ðr;u; z ¼ 0Þ ¼ S cosu sinu
2l

1

r
Q11ðMT sinuÞ

�
þ GðSÞðMT sinu; eÞ

þ W
r sinðu � uReÞ

þ W
r sinðu þ uReÞ

�
; ð109Þ

where the constants U and W are determined by imposing the elimination of the leading Rayleigh-wave
sectors. The final expressions read

uðSÞx ðr;u; z ¼ 0Þ ¼ S
2lr

Q11ðMT sinuÞ cos2 u

"
� GðSÞðMT sinu; eÞ sin2 u

þ cosum1eð1� m1eÞ1=2½ð2� m1eÞ2 þ 4ð1� m1eÞ1=2ð1� m�2
e m1eÞ1=2


pMTðM2
T sin

2 u � m1eÞðM2
T � m1eÞ1=2ðm1e � m2eÞðm1e � m3eÞ

#
; ð110Þ

uðSÞy ðr;u; z ¼ 0Þ ¼ S cosu sinu
2lr

Q11ðMT sinuÞ
"

þ GðSÞðMT sinu; eÞ

� ðM2
T � m1eÞ1=2ð1� m1eÞ1=2½ð2� m1eÞ2 þ 4ð1� m1eÞ1=2ð1� m�2

e m1eÞ1=2

p cosuMTðM2

T sin
2 u � m1eÞðm1e � m2eÞðm1e � m3eÞ

#
: ð111Þ

Finally, operating with the transformation (54) on (110) and (111) provides the displacement components

uðSÞr ðr;u; z ¼ 0Þ ¼ S
2lr

Q11ðMT sinuÞ cosu

"
� ð1� m1eÞ1=2½ð2� m1eÞ2 þ 4ð1� m1eÞ1=2ð1� m�2

e m1eÞ1=2

pMTðM2

T � m1eÞ1=2ðm1e � m2eÞðm1e � m3eÞ

#
;

ð112Þ

uðSÞu ðr;u; z ¼ 0Þ ¼ S sinu
2lr

GðSÞðMT sinu; eÞ
"

� cosuMTð1� m1Þ1=2½ð2� m1eÞ2 þ 4ð1� m1eÞ1=2ð1� m�2
e m1eÞ1=2


pðM2
T sin

2 u � m1eÞðM2
T � m1eÞ1=2ðm1e � m2eÞðm1e � m3eÞ

#
; ð113Þ

where it is noticed that thermoelastic Rayleigh Mach-type wavefronts do not exist for uðSÞr and also that uðSÞu

is anti-symmetric w.r.t. the x-axis.
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7.3. Tangential displacements due to the heat source KQ

The appropriate solution to the first auxiliary problem is given by (39) and (42), whereas the second

auxiliary problem does not play a role in view of the boundary condition ~uusðq;x; z ¼ 0Þ ¼ 0 that accom-
panies the PDE in (14) (this is expected, of course, since a thermal field does not interfere with shear waves

in coupled thermoelasticity). The Radon transformed solution is now obtained from the aforementioned

auxiliary solution through the coordinate transformation (53)

~uuðQÞx ðq;x; z ¼ 0Þ ¼ Qjh

ð1þ eÞ1=2
GðQÞðMT cosx; eÞ cosx lnðjqjÞ; ð114Þ

~uuðQÞy ðq;x; z ¼ 0Þ ¼ Qjh

ð1þ eÞ1=2
GðQÞðMT cosx; eÞ sinx lnðjqjÞ: ð115Þ

Further, by the standard inversion procedure, we obtain the following basic results for the horizontal

displacement components (uðQÞx ; uðQÞy ) in the Cartesian system and (uðQÞr ; uðQÞu ) in the cylindrical polar system.

Both pairs of components, however, are expressed for convenience in terms of the coordinates (r;u)

uðQÞx ðr;u; z ¼ 0Þ ¼ � Qjh sinu

2ð1þ eÞ1=2r
GðQÞðMT sinu; eÞ; ð116Þ

uðQÞy ðr;u; z ¼ 0Þ ¼ Qjh cosu

2ð1þ eÞ1=2r
GðQÞðMT sinu; eÞ; ð117Þ

uðQÞr ðr;u; z ¼ 0Þ ¼ 0; ð118Þ

uðQÞu ðr;u; z ¼ 0Þ ¼ Qjh

2ð1þ eÞ1=2r
GðQÞðMT sinu; eÞ: ð119Þ

From the above expressions, particular results will be extracted for the sub-Rayleigh and the super-Ray-

leigh/subsonic velocity regimes.

• Sub-Rayleigh range (0 < V < VR):
In this case, relations (116)–(119) need no modification. It is noticed that uðQÞx is symmetric w.r.t. both

axes x and y, whereas uðQÞy is anti-symmetric.

• Super-Rayleigh/subsonic range (VR < V < VT):
In this case, the solution in (116) and (117) exhibits both leading and trailing Rayleigh sectors. Of course,

the former sector should be eliminated and by the usual procedure the following result is found

uðQÞx ðr;u; z ¼ 0Þ ¼ � Qjh

2ð1þ eÞ1=2r
GðQÞðMT sinu; eÞ sinu

"

þ 2 cosum�1
e ½ð2� m1eÞ2ð1� m1eÞ1=2 þ 4ð1� m1eÞð1� m�2

e m1eÞ1=2

pðM2

T sin
2 u � m1eÞðM2

T � m1eÞ1=2ðm1e � m2eÞðm1e � m3eÞ

#
; ð120Þ

uðQÞy ðr;u; z ¼ 0Þ ¼ Qjh cosu

2ð1þ eÞ1=2r
GðQÞðMT sinu; eÞ
"

þ 2 sinum�1
e ðM2

T � m1eÞ1=2½ð2� m1eÞ2ð1� m1eÞ1=2 þ 4ð1� m1eÞð1� m�2
e m1eÞ1=2


pcosuðM2
T sin

2 u � m1eÞm1eðm1e � m2eÞðm1e � m3eÞ

#
;

ð121Þ
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uðQÞr ðr; z ¼ 0Þ ¼ Qjh

ð1þ eÞ1=2pr
m�1

e ½ð2� m1eÞ2ð1� m1eÞ1=2 þ 4ð1� m1eÞð1� m�2
e m1eÞ1=2


m1eðm1e � m2eÞðm1e � m3eÞðM2
T � m1eÞ1=2

; ð122Þ

uðQÞu ðr;u; z ¼ 0Þ ¼ Qjh

2ð1þ eÞ1=2r
GðQÞðMT sinu; eÞ
"

þ 2m�1
e M

2
T sinu cosu½ð2� m1eÞ2ð1� m1eÞ1=2 þ 4ð1� m1eÞð1� m�2

e m1eÞ1=2

pðM2

T � m1eÞ1=2ðM2
T sin

2 u � m1eÞm1eðm1e � m2eÞðm1e � m3eÞ

#
: ð123Þ

8. Change in temperature

8.1. Change in temperature due to the normal load P

Operating with the inverse Radon transform on (44), one obtains

hðP Þðr;u; z ¼ 0Þ

¼ � P e
4p2ljð1þ eÞ

Z 2p

0

LðPÞ1 ðMT cosx; eÞ
sgnðcosxÞ

Z þ1

�1

d½PFðq�1Þ

dq

PF
1

q� r cosðx � uÞ

� �
dq

� �" #
dx

(

þ
Z 2p

0

LðPÞ2 ðMT cosx; eÞ
Z þ1

�1

ddðqÞ
dq

PF
1

q� r cosðx � uÞ

� �
dq

� �� �
dx

)
: ð124Þ

The evaluation now of the two inner integrals in (124) is accomplished by utilizing the following distri-

butional properties involving differentiation of convolutions (Gel�fand and Shilov, 1964; Roos, 1969)Z þ1

�1

d½PFðq�1Þ

dq

PF
1

q� a

� �
dq ¼ d

da

Z þ1

�1
PF

1

q

� �
PF

1

q� a

� �
dq

� �
¼ p2 ddðaÞ

da
; ð125Þ

Z þ1

�1

ddðqÞ
dq

PF
1

q� a

� �
dq ¼ d

da

Z þ1

�1
dðqÞPF 1

q� a

� �
dq

� �
¼ d½PFð�a�1Þ


da
: ð126Þ

With the above results in hand, Eq. (124) becomes

hðPÞðr;u; z ¼ 0Þ ¼ � P e
4ljð1þ eÞ

Z 2p

0

LðPÞ1 ðMT cosx; eÞ
sgnðcosxÞ

d½dðr cosðx � uÞÞ

d½r cosðx � uÞ
 dx

(

þ
Z 2p

0

LðPÞ2 ðMT cosx; eÞ d½PFð�½r cosðx � uÞ
�1Þ

d½r cosðx � uÞ
 dx

)
: ð127Þ

Next, the two integrals in (127) will be evaluated by using again distribution theory. More specifically, for

the first integral we rely upon the following results. First, let f tð Þ be a real-valued function, which is twice

continuously differentiable and varies monotonically from f ðaÞ to f ðbÞ as t increases from a to b, and also

f ðcÞ ¼ 0 with a < c < b. Then, it is valid that (Hoskins, 1979)

dd½f ðtÞ

df ðtÞ ¼ 1

jf 0ðcÞj2
ddðt � cÞ

dt

�
þ f

00ðcÞ
f 0ðcÞ dðt � cÞ

�

if f ðtÞ increases in the considered interval, whereas
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dd½f ðtÞ

df ðtÞ ¼ � 1

jf 0ðcÞj2
ddðt � cÞ

dt

�
þ f

00ðcÞ
f 0ðcÞ dðt � cÞ

�

if f ðtÞ decreases in the same interval. Secondly, use is made of the definition of the derivative of the Dirac

delta distribution, i.e.Z þ1

�1
f ðfÞd0ðfÞdf ¼ �f 0ð0Þ:

These two properties along with the observation that LðPÞ1 ðMT sinu; eÞ cosudðsinuÞ ¼ 0 (this is because

LðPÞ1 ð0; eÞ ¼ 0), lead to the result

2p2

r2sgnð� sinuÞ
d½LðPÞ1 ðMT cosðx þ uÞ; eÞ


dx

( )
x¼p=2

for the first integral. As for the second integral, we first apply the change of variable f ¼ cosx and then

make use of the distributional property dfPFðq�1Þg=dq ¼ �PFðq�2Þ. In view of the above, Eq. (127) be-

comes

hðPÞðr;u; z ¼ 0Þ ¼ � P e
2p2ljð1þ eÞr2

p2

sgnð� sinuÞ
d½LðPÞ1 ðMT cosðx þ uÞ; eÞ


dx

�����
x¼p=2

8<
:

þ
Z 1

0

LðPÞ2 ½MTf ðfÞ; e

ð1� f2Þ1=2

PF
1

f2

� �
df þ

Z 1

0

LðP Þ2 ½MTgðfÞ; e

ð1� f2Þ1=2

PF
1

f2

� �
df

9=
;; ð128Þ

where f ðfÞ ¼ f cosu þ ð1� f2Þ1=2 sinu and gðfÞ ¼ f cosu � ð1� f2Þ1=2 sinu.

8.2. Change in temperature due to the tangential load S

Operating with the inverse Radon transform on (45) and proceeding along the same lines as in the

previous case, we obtain the final result

hðSÞðr;u; z ¼ 0Þ ¼ � Se
2p2ljð1þ eÞr2

�

8<
:� p2 d½LðP Þ1 ðMT cosðx þ uÞ; eÞ


dx

�����
x¼p=2

sinu

2
4 þ LðPÞ1 ðMT sinu; eÞ cosu

3
5

þ
Z 1

0

LðSÞ2 ½MTf ðfÞ; e
jf ðfÞj
ð1� f2Þ1=2

PF
1

f2

� �
df þ

Z 1

0

LðSÞ2 ½MTgðfÞ; e
jgðfÞj
ð1� f2Þ1=2

PF
1

f2

� �
df

9=
;:

ð129Þ

9. Numerical results

The numerical results are presented in the form of graphs showing the normalized dimensionless dis-
placements U ðPÞ

z ¼ uðP Þz lr=P , U ðSÞ
z ¼ uðSÞz lr=S, U ðQÞ

z ¼ uðQÞz ð1þ eÞ1=2r=jQh, U ðPÞ
r ¼ uðPÞr lr=P , U ðSÞ

r ¼ uðSÞr lr=S,
U ðQÞ
r ¼ uðQÞr ð1þ eÞ1=2r=jQh, U ðPÞ

u ¼ uðPÞu lr=P , U ðSÞ
u ¼ uðSÞu lr=S and U ðQÞ

u ¼ uðQÞu ð1þ eÞ1=2r=jQh as functions of

928 G. Lykotrafitis, H.G. Georgiadis / International Journal of Solids and Structures 40 (2003) 899–940



the polar angle u or the shear Mach number MT, for a material with Poisson�s ratio m ¼ 0:3 and ther-

moelastic coupling constant e ¼ 0:011. All integrals appearing in the results of Sections 6–8 were evaluated

numerically.

Fig. 8 shows U ðPÞ
z vs. u curves for various load speeds. In the sub-Rayleigh range (case of MT ¼ 0:8) the

displacement is positive and, therefore, is directed into the half space. In the subsonic/super-Rayleigh range

(case of MT ¼ 0:95), there is a Cauchy-type discontinuity along the Rayleigh Mach wavefronts at

u ¼ 106:47� and the displacement is positive in the sector defined by the Rayleigh lines (behind the load)

but negative elsewhere. In the transonic range (case of MT ¼ 1:2), there is a Cauchy-type discontinuity

along the Rayleigh wavefronts at u ¼ 130:61� and a slope discontinuity along the shear wavefronts (defined

by M2
T sin

2 u ¼ 1) at u ¼ 123:56�. In the supersonic range (case of MT ¼ 2:5), the displacement suffers a

Cauchy-type discontinuity along the Rayleigh wavefronts at u ¼ 158:63� and a slope discontinuity along

the shear wavefronts at u ¼ 156:42�. In the same range, the displacement becomes zero along the longi-
tudinal wavefronts at u ¼ 139:22�.

Figs. 9–12 show U ðSÞ
z vs. u curves for, respectively, a sub-Rayleigh speed of the load S (MT ¼ 0:8), a

super-Rayleigh/subsonic speed (MT ¼ 0:95), a transonic speed (MT ¼ 1:2) and a supersonic speed

(MT ¼ 2:5). It is of notice in the super-Rayleigh/subsonic case that U ðSÞ
z is continuous along the Rayleigh

lines at u ¼ 106:47� and that the magnitude of U ðSÞ
z is smaller (by a factor of 10, approximately) in the

super-Rayleigh case as compared to that in the sub-Rayleigh case. Also U ðSÞ
z is symmetric w.r.t. the x-axis

and is zero along lines at u ¼ p=2, 3p=2. In the transonic case, U ðSÞ
z experiences a slope discontinuity at the

shear Mach wavefronts and, also, it is negative inside the shear wavefront sector but positive outside this
sector. Finally, Fig. 12 shows that U ðSÞ

z , in the supersonic case, is zero everywhere except in the region of the

two sectors between the longitudinal and shear wavefront lines.

Fig. 13 shows the variation of U ðPÞ
r with the Mach number MT in the subsonic range, where U ðPÞ

r is in-

dependent of the polar angle u. The radial displacement is negative (i.e. its direction is towards the point of

application of the load) and becomes infinite as the velocity approaches the Rayleigh wave velocity at

Fig. 8. Variation of the normalized vertical displacement U ðPÞ
z ¼ uðPÞz lr=P , due to a normal moving load, with the polar angle u for

various load speeds (cases of MT ¼ 0:8, 0.95, 1.2 and 2.5, which correspond to sub-Rayleigh, super-Rayleigh/subsonic, transonic and

supersonic motion, respectively). The symbols L and T mark discontinuities associated with longitudinal and transverse (shear)

wavefronts, respectively.
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VR=VT ffi 0:91. At this speed the displacement is discontinuous. When VR < V , U ðPÞ
r is finite everywhere and

remains continuous across the Rayleigh lines. Fig. 14 shows the variation of U ðPÞ
r with u indicating that this

displacement component is continuous across the Rayleigh lines, the x-axis and the y-axis. U ðPÞ
r is anti-

symmetric w.r.t. the x and y axes. Also, one may observe that the magnitude of U ðPÞ
r is much smaller in the

super-Rayleigh speed (case of MT ¼ 0:95) than the one in the sub-Rayleigh speed (case of MT ¼ 0:8).

Fig. 9. Variation of the normalized vertical displacement U ðSÞ
z ¼ uðSÞz lr=S, due to a tangential moving load, with the polar angle u for a

load speed MT ¼ 0:8.

Fig. 10. Variation of the normalized vertical displacement U ðSÞ
z ¼ uðSÞz lr=S, due to a tangential moving load, with the polar angle u for a

load speed MT ¼ 0:95.
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Fig. 15 shows the variation of U ðSÞ
r with u at load velocities MT ¼ 0:8 and 0.95. No Rayleigh singularity

appears and U ðSÞ
r is continuous and bounded in all directions. Fig. 16 depicts U ðSÞ

u vs. u indicating that this
displacement component: (i) is continuous in the entire u range, (ii) is negative in the half-plane y > 0 and

positive in the half-plane y < 0, in the case of sub-Rayleigh speeds (MT ¼ 0:8), and (iii) suffers a Cauchy-

type singularity at the Rayleigh wavefront, in the case of super-Rayleigh speeds (MT ¼ 0:95).
A qualitative comparison of the present results with the respective results for the �pure mechanical�

problem (Georgiadis and Lykotrafitis, 2001) shows generally that the variation of the displacements is

Fig. 11. Variation of the normalized vertical displacement U ðSÞ
z ¼ uðSÞz lr=S, due to a tangential moving load, with the polar angle u for a

load speed MT ¼ 1:2.

Fig. 12. Variation of the normalized vertical displacement U ðSÞ
z ¼ uðSÞz lr=S, due to a tangential moving load, with the polar angle u for a

load speed MT ¼ 2:5.
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smoother in the thermoelastic case. This can be attributed to the diffusive components in the governing

equations.

As for the thermal source, Figs. 17–20 present the variation of U ðQÞ
z with u for the source velocities

MT ¼ 0:8, 0.95, 1.2 and 2.5. These results show the occurrence of singularities along the line of motion of

the thermal source (i.e. ahead of and behind the source). Also, as the source speed increases in the subsonic

Fig. 13. Variation of the normalized radial displacement U ðPÞ
r ¼ uðPÞr lr=P , due to a normal moving load, with the transverse Mach

number MT. The discontinuity occurs when the load speed reaches the thermoelastic Rayleigh-wave speed in the medium.

Fig. 14. Variation of the normalized radial displacement U ðPÞ
r ¼ uðPÞr lr=P , due to a normal moving load, with the polar angle u for load

speeds MT ¼ 0:8 and 0.95.
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regime (results presented in Figs. 17 and 18) the vertical displacement decreases. An analogous result was
detected in the results given before for the case of a mechanical source. In Figs. 19 and 20 discontinuities

appear along the transverse and longitudinal wavefronts, respectively. In addition, Fig. 21 shows the

variation of U ðQÞ
r with the shear Mach number MT in the subsonic regime. A comparison between the U ðQÞ

r

vs. MT behavior (Fig. 21) and the U ðP Þ
r vs. MT behavior (Fig. 13) contrasts the difference between the action

of moving thermal and point-load sources. Indeed, in the case of a thermal source, U ðQÞ
r ¼ 0 in the whole

Fig. 15. Variation of the normalized radial displacement U ðSÞ
r ¼ uðSÞr lr=S, due to a tangential moving load, with the polar angle u for

load speeds MT ¼ 0:8 and 0.95.

Fig. 16. Variation of the normalized tangential displacement U ðSÞ
u ¼ uðSÞu lr=S, due to a tangential moving load, with the polar angle u

for MT ¼ 0:8 and 0.95.
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sub-Rayleigh range. Finally, Fig. 22 shows the variation of the normalized tangential displacement U ðQÞ
u

with u for the source velocities MT ¼ 0:8 and 0.95. In the latter case, one may observe the Cauchy-type
singularity of U ðQÞ

u along the Rayleigh Mach wavefronts at u ¼ 106:47�.

Fig. 17. Variation of the normalized vertical displacement U ðQÞ
z ¼ uðQÞz ð1þ eÞ1=2r=jQh, due to a thermal moving load, with the polar

angle u for MT ¼ 0:8.

Fig. 18. Variation of the normalized vertical displacement U ðQÞ
z ¼ uðQÞz ð1þ eÞ1=2r=jQh, due to a thermal moving load, with the polar

angle u for MT ¼ 0:95.
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10. Concluding remarks

In conclusion, the 3D steady-state dynamical problem of a thermoelastic half space under the action of

thermal and mechanical moving sources is treated in this paper. This problem is relevant to model contacts

Fig. 19. Variation of the normalized vertical displacement U ðQÞ
z ¼ uðQÞz ð1þ eÞ1=2r=jQh, due to a thermal moving load, with the polar

angle u for MT ¼ 1:2.

Fig. 20. Variation of the normalized vertical displacement U ðQÞ
z ¼ uðQÞz ð1þ eÞ1=2r=jQh, due to a thermal moving load, with the polar

angle u for MT ¼ 2:5.
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of rapidly sliding bodies. Exact solutions are obtained by using a technique based on the Radon transform
and distribution theory. The present work completes recent 2D studies (Brock and Georgiadis, 1997, 1999)

on the subject of thermo-elastodynamic fundamental solutions of moving-load problems since it deals with

the more difficult and more interesting 3D problem. The present results can also be used as Green�s
functions for integral-equation solutions of more general 3D elastodynamic contact problems.

Fig. 21. Variation of the normalized radial displacement U ðQÞ
r ¼ uðQÞr ð1þ eÞ1=2r=jQh, due to a thermal moving load, with the transverse

Mach number MT.

Fig. 22. Variation of the normalized tangential displacement U ðQÞ
u ¼ uðQÞu ð1þ eÞ1=2r=jQh, due to a thermal moving load, with the polar

angle u for MT ¼ 0:8 and 0.95.
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Appendix A

Following a relative idea from Rahman and Barber (1995), who considered the �pure elastic� Rayleigh

function, we write the thermoelastic function KeðMT; eÞ defined in Eq. (32) of the main text of the paper in
the form

KeðMT; eÞ ¼ M2
TfM6

T � 8M4
T þ 8ð3� 2m�2

e ÞM2
T � 16ð1� m�2

e Þg
¼ M2

TðM2
T � m1eÞðM2

T � m2eÞðM2
T � m3eÞ; ðA:1Þ

where (m1e;m2e;m3e) are the non-trivial zeroes of KðMT; eÞ. The following analytic expressions for these
zeroes can be obtained

m1e ¼
4

3
2

�
þ 21=3ð5me � 2Þ

bðmeÞ
� 22=3

4ð1� meÞ
bðmeÞ

�
; ðA:2Þ

m2e ¼
2

3
4

"
� 21=3ð1þ i31=2Þð5me � 2Þ

bðmeÞ
þ 22=3ð1� i31=2Þ

4ð1� meÞ
bðmeÞ

#
; ðA:3Þ

m3e ¼
2

3
4

"
� 21=3ð1� i31=2Þð5me � 2Þ

bðmeÞ
þ 22=3ð1þ i31=2Þ

4ð1� meÞ
bðmeÞ

#
; ðA:4Þ

where me ¼ ½m þ eð1� mÞ
=½1þ 2eð1� mÞ
 is a material constant that depends upon the Poisson ratio and the

coupling constant of the material, i ¼ ð�1Þ1=2, bðmeÞ ¼ ½33=2cðmeÞ þ 56m3e � 123m2e þ 78me � 11
1=3, and

cðmeÞ ¼ ½ð1� meÞ3ð32m3e � 16m2e þ 21me � 5Þ
1=2.
Further, an inspection on the above functions and a graphical representation of the functions m1eðmeÞ,

Reðm2eðmeÞÞ, Reðm3eðmeÞÞ, (m2e � m2
e ) and (m3e � m2

e ), where Reð Þ denotes the real part of a complex function

and me ¼ ½2ð1� meÞ=ð1� 2meÞ
1=2, reveal the following points: (i) The zero m1e is real for all values of me and

coincides with the non-trivial zero of the Rayleigh function ReðMT; eÞ. (ii) The zeros m2e and m3e are also

zeros of the function ð2�M2
TÞ

2 þ 4ð1�M2
LeÞ

1=2ð1�M2
TÞ

1=2
. They are real in the interval 0 < me 6 m0, where

m0 ¼ 0:26308206488336365 . . ., and complex conjugate in the interval m0 < me < 0:5. We also notice that m0 is
the real zero of cðmeÞ. (iii) The inequalities m1e < 1 < Reðm2eÞ < Reðm3eÞ are valid. (iv) The inequalities

M2
Le < M2

T 6m
2
e < m2e < m3e are valid in the subsonic and transonic speed ranges if (m2e;m3e) are real (i.e.

in the interval 0 < me 6 m0). (v) The equality m1em2em3e ¼ 16ð1� m�2
e Þ is always valid.

Having available, through (A.1), the factorization forms of Ke and Re permits writing (64) and other

analogous equations in the main text of the paper.

Finally, the expansions of the functions (A, B, C, D, E, N ) in sums of partial fractions are as follows:

AðMT; eÞ ¼
4ð1�M2

LeÞQ3

j¼1ðM2
T � mjeÞ

¼
X3
j¼1

Aj
ðM2

T � mjeÞ
; ðA:5Þ

BðMT; eÞ ¼
ð2�M2

TÞ
3Q3

j¼1ðM2
T � mjeÞ

¼
X3
j¼1

Bj
ðM2

T � mjeÞ
; ðA:6Þ

CðMT; eÞ ¼
ð8m�2

e � 4Þ þ ð6� 8m�2
e ÞM2

T �M4
TQ3

j¼1ðM2
T � mjeÞ

¼
X3
j¼1

Cj
ðM2

T � mjeÞ
; ðA:7Þ
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DðMT; eÞ ¼
2ð2�M2

TÞQ3

j¼1ðM2
T � mjeÞ

¼
X3
j¼1

Dj
ðM2

T � mjeÞ
; ðA:8Þ

EðMT; eÞ ¼
ð2�M2

TÞ
3Q3

j¼0ðM2
T � mjeÞ

¼
X3
j¼0

Ej
ðM2

T � mjeÞ
; ðA:9Þ

NðMT; eÞ ¼
4ð2�M2

TÞQ3

j¼0ðM2
T � mjeÞ

¼
X3
j¼0

Nj
ðM2

T � mjeÞ
; ðA:10Þ

where m0e � 0 and

A1 ¼
4ð1� m�2

e m1eÞ
ðm1e � m2eÞðm1e � m3eÞ

; A2 ¼
4ð1� m�2

e m2eÞ
ðm2e � m1eÞðm2e � m3eÞ

;

A3 ¼
4ð1� m�2

e m3eÞ
ðm3e � m1eÞðm3e � m2eÞ

; ðA:11a–cÞ

B1 ¼
ð2� m1eÞ2

ðm1e � m2eÞðm1e � m3eÞ
; B2 ¼

ð2� m2eÞ2

ðm2e � m1eÞðm2e � m3eÞ
; B3 ¼

ð2� m3eÞ2

ðm3e � m1eÞðm3e � m2eÞ
;

ðA:12a–cÞ

C1 ¼
ð8m�2

e � 4Þ þ ð6� 8m�2
e Þm1e � m2

1e

ðm1e � m2eÞðm1e � m3eÞ
; C2 ¼

ð8m�2
e � 4Þ þ ð6� 8m�2

e Þm2e � m2
2e

ðm2e � m1eÞðm2e � m3eÞ
;

C3 ¼
ð8m�2

e � 4Þ þ ð6� 8m�2
e Þm3e � m2

3e

ðm3e � m1eÞðm3e � m2eÞ
; ðA:13a–cÞ

D1 ¼
2ð2� m1eÞ

ðm1e � m2eÞðm1e � m3eÞ
; D2 ¼

2ð2� m2eÞ
ðm2e � m1eÞðm2e � m3eÞ

;

D3 ¼
2ð2� m3eÞ

ðm3e � m1eÞðm3e � m2eÞ
; ðA:14a–cÞ

E0 ¼ � 8

m1em2em3e
; E1 ¼

ð2� m1eÞ3

m1eðm1e � m2eÞðm1e � m3eÞ
;

E2 ¼
ð2� m2eÞ3

m2eðm2e � m1eÞðm2e � m3eÞ
; E3 ¼

ð2� m3eÞ3

m3eðm3e � m1eÞðm3e � m2eÞ
; ðA:15a–dÞ

N0 ¼ � 8

m1em2em3e
; N1 ¼

4ð2� m1eÞ
m1eðm1e � m2eÞðm1e � m3eÞ

;

N2 ¼
4ð2� m2eÞ

m2eðm2e � m1eÞðm2e � m3eÞ
; N3 ¼

4ð2� m3eÞ
m3eðm3e � m1eÞðm3e � m2eÞ

: ðA:16a–dÞ
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